The boundedness in a closed region of the gradient of a harmonic funcion
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 25 (1970) no. 2 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1970_25_2_a16,
     author = {B. N. Khimchenko},
     title = {The boundedness in a~closed region of the gradient of a~harmonic funcion},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1970},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1970_25_2_a16/}
}
TY  - JOUR
AU  - B. N. Khimchenko
TI  - The boundedness in a closed region of the gradient of a harmonic funcion
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1970
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_1970_25_2_a16/
LA  - ru
ID  - RM_1970_25_2_a16
ER  - 
%0 Journal Article
%A B. N. Khimchenko
%T The boundedness in a closed region of the gradient of a harmonic funcion
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1970
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/RM_1970_25_2_a16/
%G ru
%F RM_1970_25_2_a16
B. N. Khimchenko. The boundedness in a closed region of the gradient of a harmonic funcion. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 25 (1970) no. 2. http://geodesic.mathdoc.fr/item/RM_1970_25_2_a16/

[1] Kjell-ove Widman, “Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations”, Math. Scand., 21 (1967), 17–37 | MR

[2] B. N. Khimchenko, “O povedenii supergarmonicheskoi funktsii vblizi granitsy oblasti tipa $A^{(1)}$”, Differents. uravn., 5:10 (1969) | Zbl