@article{RM_1970_25_2_a14,
author = {V. G. Maz'ya},
title = {The degenerate problem with oblique derivative},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
year = {1970},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1970_25_2_a14/}
}
V. G. Maz'ya. The degenerate problem with oblique derivative. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 25 (1970) no. 2. http://geodesic.mathdoc.fr/item/RM_1970_25_2_a14/
[1] A. V. Bitsadze, Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, «Nauka», M., 1966
[2] A. Yanushauskas, “O bezuslovnoi razreshimosti zadachi o naklonnoi proizvodnoi”, Differents. uravn., 3:1 (1967), 89–96
[3] R. L. Borrelli, “The singular second-order oblique derivative problem”, J. Math. and Mech., 16 (1966), 51–82 | MR
[4] R. L. Borrelli, “The $J$-Fredholm property for oblique derivative problems”, Math. Z., 101 (1967), 103–122 | DOI | MR | Zbl
[5] L. Hörmander, “Pseudo-differential operators and non-elliptic boundary problems”, Ann. of Math., 83:1 (1966), 129–209 | DOI | MR | Zbl
[6] Yu. V. Egorov, V. A. Kondratev, “O suschestvovanii resheniya zadachi o kosoi proizvodnoi”, UMN, 22:1 (1967), 165–167 | MR
[7] Yu. V. Egorov, V. A. Kondratev, “O zadache s kosoi proizvodnoi”, Matem. sb., 78 (122):1 (1969), 148–176 | MR | Zbl
[8] M. B. Malyutov, “O zadache s naklonnoi proizvodnoi v trekhmernom prostranstve”, DAN, 172:2 (1967), 283–286 | Zbl
[9] V. G. Mazya, B. P. Paneyakh, “Vyrozhdayuschiesya ellipticheskie psevdodifferentsialnye operatory na gladkom mnogoobrazii bez kraya”, Funkts. analiz, 3:2 (1969), 91–92 | MR