A formula for the number of Euler cycles of a complete graph $U_n$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 24 (1969) no. 6 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1969_24_6_a4,
     author = {V. A. Sorokin},
     title = {A~formula for the number of {Euler} cycles of a~complete graph~$U_n$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1969},
     volume = {24},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1969_24_6_a4/}
}
TY  - JOUR
AU  - V. A. Sorokin
TI  - A formula for the number of Euler cycles of a complete graph $U_n$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1969
VL  - 24
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_1969_24_6_a4/
LA  - ru
ID  - RM_1969_24_6_a4
ER  - 
%0 Journal Article
%A V. A. Sorokin
%T A formula for the number of Euler cycles of a complete graph $U_n$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1969
%V 24
%N 6
%U http://geodesic.mathdoc.fr/item/RM_1969_24_6_a4/
%G ru
%F RM_1969_24_6_a4
V. A. Sorokin. A formula for the number of Euler cycles of a complete graph $U_n$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 24 (1969) no. 6. http://geodesic.mathdoc.fr/item/RM_1969_24_6_a4/

[1] O. Ore, Teoriya grafov, «Nauka», M., 1968 | MR

[2] Van Aardenne, Ehrenfest, N. G. de Brÿn, “Circuits and trees in oriented graphs”, Simon Stevin, 28 (1951), 203–217 | MR | Zbl