@article{RM_1969_24_3_a5,
author = {J. Eells},
title = {The foundations of global analysis},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
year = {1969},
volume = {24},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1969_24_3_a5/}
}
J. Eells. The foundations of global analysis. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 24 (1969) no. 3. http://geodesic.mathdoc.fr/item/RM_1969_24_3_a5/
[1] R. Abraham, “Transversality in manifölds of mappings”, Bull. Amer. Math. Soc., 69 (1963), 470–474 | DOI | MR | Zbl
[2] R. Abraham, Lectures of Smale on differential topology, Notes at Columbia University, New York, 1962–1963
[3] V. I. Anosov, “O kriticheskikh tochkakh periodicheskikh funktsionalov”, DAN, 131 (1960), 223–226 | MR
[4] R. F. Arens, J. Eells, “On embedding uniform and topological spaces”, Pacific Journ. Math., 6 (1956), 397–403 | MR | Zbl
[5] R. G. Bartle, “On the opennes and inversion of differentiable mappings”, Ann. Acad. Sci. Fenn., 257 (1958), 3–8 | MR
[6] A. Bastiani, “Applications differentiables et variétés differentiables de dimension infinie”, Journ. Anal. Math., 13 (1964), 1–114 | DOI | MR | Zbl
[7] I. Berstein, J. Eells, K. Gȩba, Poincaré duality in function spaces, In preparation
[8] C. Bessaga, “Every infinite-dimensional Hilbert space is diffeomorfic with its unit sphere”, Bull. Acad. Polon Sci. (to appear)
[9] G. Birkhoff, “Analytical groups”, Trans. Amer. Math. Soc., 43 (1938), 61–101 | DOI | MR
[10] R. Bonic, J. Frampton, “Differentiable functions on certain Banach spaces”, Bull. Amer. Math. Soc., 71 (1965), 393–395 | DOI | MR | Zbl
[11] R. Bonic, J. Frampton, “Smooth functions on Banach manifolds” (to appear)
[12] R. Bott, Lectures on $K$-theory, Mimeographed notes, Harvard University, Cambridge, Mass., 1962
[13] N. Bourbaki, Espaces vectoriels topologiques, Hermann, Paris, 1953, Chapters I–II ; Hermann, Paris, 1955, Chapters III–IV; N. Burbaki, Topologicheskie vektornye prostranstva | MR | Zbl
[14] H. J. Bremermann, “Holomorphic functionals and complex convexity in Banach spaces”, Pacific Journ. Math., 7 (1957), 811–831 | MR | Zbl
[15] F. E. Browder, “On a generalizations of the Schauder fixed point theorem”, Duke Math. Journ., 26 (1959), 291–304 | DOI | MR
[16] F. E. Browder, “Infinite dimensional manifolds and nonlinear elliptic eigenvalue problems”, Ann. of Math., 82 (1965), 459–477 | DOI | MR | Zbl
[17] F. E. Browder, “Fixed point theorems on infinite dimensional manifolds”, Trans. Amer. Math. Soc., 119 (1965), 179–194 | DOI | MR | Zbl
[18] I. Colojoarǎ, “On Whitney's imbedding theorem”, Rev. Roumaine Math. Pures Appl., 10 (1965), 291–296 | MR
[19] P. E. Conner, E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematick, 33, Springer, Berlin, 1964 | MR | Zbl
[20] H. H. Corson, “Collections of convex sets which cover a Banach space”, Fund. Math., 49 (1961), 143–145 | MR | Zbl
[21] J. Cronin, Fixed points and topological degree in nonlinear analysis, Math. Surveys, 11, Amer. Math. Soc., Providence, R. I., 1964 | MR | Zbl
[22] J. A. Dieudonné, “Recent developments in the theory of locally convex vector spaces”, Bull. Amer. Math. Soc., 59 (1953), 495–512 | DOI | MR | Zbl
[23] J. A. Dieudonné, Foundations of modern analysis, Academic Press, New York, 1960 ; Zh. Dedonne, Osnovy sovremennogo analiza, «Mir», M., 1964 | MR | Zbl
[24] J. Dixmier, A. Douady, “Champs continus d'espaces hilbertiens et de $C^*$-algèbres”, Bull. Soc. Math. France, 91 (1963), 227–284 | MR | Zbl
[25] A. Douady, “Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné”, Sem. Collège de France, 1964–1965
[26] J. Dugundji, “An extension of Tietze's theorem”, Pacific Journ. Math., 1 (1951), 353–367 | MR | Zbl
[27] N. Dunford, J. T. Schwartz, Linear Operators, Interscience, New York, 1958 ; N. Danford, Dzh. T. Shvarts, Lineinye operatory, IL, M., 1962 | Zbl
[28] E. B. Dynkin, “Normirovannye algebry Li i analiticheskie gruppy”, UMN, 5 (33) (1950), 135–186 ; Amer. Math. Soc. Transl., 97 (1953), 66 | MR | MR
[29] C. J. Earle, J. Eells, “Foliations and fibrations on the differential geometry of Teichmuller spaces” (to appear) | MR
[30] J. Eells, “On the geometry of functions spaces”, Symp. Inter. de Topologia Alg. (Mexico, 1956), 1958, 303–308 | MR | Zbl
[31] J. Eells, “On submanifolds of certain function spaces”, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 1520–1522 | DOI | MR | Zbl
[32] J. Eells, “A class of smooth bundles over a manifold”, Pacific Journ. Math., 10 (1960), 525–538 | MR | Zbl
[33] J. Eells, “Alexander-Pontrjagin duality in function spaces”, Proc. Sympos. Pure Math., 111, Amer. Math. Soc., Providence, R. I., 1961, 109–129 | MR
[34] J. Eells, Analysis on manifolds, Mimeographed notes, Cornell University, Ithaca, N.Y., 1964–1965
[35] J. Eells, J. H. Sampson, “Harmonic mappings of Riemannian manifolds”, Amer. Journ. Math., 86 (1964), 109–160 | DOI | MR | Zbl
[36] J. Eells, “Energie et déformations en géométrie différentielle”, Ann. Inst. Fourier (Grenoble), 14 (1964), 61–69 | MR | Zbl
[37] J. Eells, “Variational theory in fibre bundles”, Proc. Kyoto Conference on Differential Geometry, Kyoto, 1965
[38] J. Framton, Smooth partitions of unity on Banach manifolds, Ph. D. Thesis, Yale University, New Haven, Conn., 1965
[39] K. Geba, “Sur les groupes de cohomotopie dans les espaces de Banach”, Compt. Rend. Acad. Sci. Paris, 254 (1962), 3293–3295 | MR | Zbl
[40] K. Geba, “Algebraic topology methods in the theory of compact fields in Banach spaces”, Fund. Math., 54 (1964), 177–209 | MR
[41] K. Geba, A. Granas, “Algebraic topology in linear normed spaces. I; II”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 13 (1965), 287–290 | MR | Zbl
[42] G. Glaeser, “Étude de quelques algèbres tayloriennes”, Journ. Anal. Math., 6 (1958), 1–125 | DOI | MR
[43] A. Granas, “The theory of compact vector fields and some of its applications to topology of functional spaces”, Rozprawy Mat., 30 (1962) | MR | Zbl
[44] L. Graves, “Riemann integration and Taylors theorem in general analysis”, Trans. Amer. Math. Soc., 29 (1927), 163–177 | DOI | MR | Zbl
[45] L. Graves, “Implicit functions and differential equations in general analysis”, Trans. Amer. Math. Soc., 29 (1927), 514–552 | DOI | MR | Zbl
[46] L. Graves, “Topics in functional calculus”, Bull. Amer. Math. Soc., 41 (1935), 641–662 ; 42 (1936), 381–382 | DOI | MR | DOI | MR
[47] L. Graves, T. Hildebrandt, “Implicit functions and their differentials in general analysis”, Trans. Amer. Math. Soc., 29 (1927), 127–153 | DOI | MR | Zbl
[48] N. Grossmann, Geodesics on Gilbert manifolds, Ph. D. Thesis, University of Minnesota, Minneapolis, Minn., 1964
[49] N. Grossman, Hilbert manifolds without epiconjugate points, Mimeographed notes, Institute for Advanced Study, Princeton, N.J.
[50] M. Hestenes, “Applications of the theory of quadratic forms in Hilbert space to the calculus of variations”, Pacific Journ. Math., 1 (1951), 525–581 | MR | Zbl
[51] M. Hestenes, “Quadratic variational theory and linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 101 (1961), 306–350 | DOI | MR | Zbl
[52] E. Hille, R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., 31, Amer. Math. Soc., Providence, R.I., 1957 ; E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1951 | MR | Zbl
[53] L. Hörmander, Linear parfial differential operators, Springer, Berlin, 1963
[54] K. Jänich, “Vectorraumbündel und der Raum der Fredholm-Operatoren”, Math. Ann., 161 (1965), 129–142 | DOI | MR | Zbl
[55] S. Kakutani, “Topological properties of the unit sphere in Hilbert space”, Proc. Imp. Acad. Tokyo, 19 (1943), 269–271 | DOI | MR | Zbl
[56] H. H. Keller, “Über die Differentialgleichung erster Ordnung in normierten linearen Räumen”, Rend. Circ. Matem. Palermo, 8 (1959), 117–144 | DOI | MR | Zbl
[57] M. Kerner, “Abstract differential geometry”, Compositio Math., 4 (1937), 308–341 | MR
[58] V. L. Klee, “Convex bodies and periodic homeomorphisms in Hilbert space”, Trans. Amer. Math. Soc., 74 (1953), 10–43 | DOI | MR | Zbl
[59] V. L. Klee, “Some topological properties of convex sets”, Trans. Amer. Math. Soc., 78 (1955), 30–45 | DOI | MR | Zbl
[60] W. Klingenberg, “The theorem of the three closed geodesics”, Bull. Amer. Math. Soc., 71 (1965), 601–605 | DOI | MR | Zbl
[61] M. Klingmann, Doctoral Dissertations, University of Heidelberg, 1965
[62] M. A. Krasnoselskii, Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956 | MR
[63] N. H. Kuiper, “The homotopy type of the unitary group of Hilbert space”, Topology, 3 (1965), 19–30 | DOI | MR | Zbl
[64] I. Kupka, “Counterexample to the Morse-Sard theorem in the case of infinite dimensional manifolds”, Proc. Amer. Math. Soc., 16 (1965), 954–957 | DOI | MR
[65] J. Kurzweil, “An approximation in real Banach spaces”, Studia Math., 14 (1954) | MR
[66] S. Leng, Vvedenie v teoriyu differentsiruemykh mnogoobrazii, «Mir», M., 1967
[67] D. Laugwitz, “Differentialgeometrie ohne Dimensionsaxiom. I; II”, Math. Z., 61 (1954), 100–118 ; 134–149 | DOI | MR | Zbl | MR | Zbl
[68] D. Laugwitz, “Über unendliche kontinuierliche Gruppen. I; II”, Math. Ann., 130 (1955–1956), 337–350 ; Bayer. Akad. Wiss. Math.-Nat. Kl., 1956, 261–286 | DOI | MR | Zbl | MR
[69] D. Laugwitz, “Gründlagen für die Geometrie der unendlichdimensionalen Finslerräume”, Ann. Math. Pura Appl. (4), 41 (1956), 21–41 | DOI | MR | Zbl
[70] J. Lelong, “Sur les groupes à un paramétre de transformations des variétés differentiables”, Journ. Math. Pures Appl., 37 (1958), 269–278 | MR | Zbl
[71] J. Leray, “Sur les equations et les transformations”, Journ. Math. Pures Appl., 24 (1945), 201–248 | MR
[72] J. Leray, “La théorie des points fixes et ses applications en analyse”, Proc. Internat. Congress, Vol. 2 (Cambridge, Mass., 1950), Amer. Math. Soc., Providence, R. I., 1952, 202–208 | MR
[73] J. Leray, “Théorie de points fixes: Indice total et nombre de Lefschetz”, Bull. Soc. Math. France, 87 (1959), 221–233 | MR | Zbl
[74] J. Leray, J. Schauder, “Topologie et equations fonctionnelles”, Ann. École Norm. Sup., 51 (1934), 45–78 | MR
[75] P. Lévy, Leçons d'analyse fonctionnelle, Gauthier - Villars, Paris, 1922 | Zbl
[76] B. Maissen, “Lie-Gruppen mit Banachräumen als Parameterräume”, Acta Math., 108 (1962), 229–269 | DOI | MR
[77] J. H. McAlpin, Infinite dimensional manifolds and Morse theory, Ph. D. Thesis, Columbia University, New York, 1965
[78] W. Meyer, Kritische Mannigfaltigkeiten in Hilbert-mannigfaltigkeiten, Doctoral Dissertations, University of Bonn, 1964
[79] A. D. Michal, “General differential geometries and related topics”, Bull. Amer. Math. Soc., 45 (1939), 525–563 | DOI | MR
[80] J. W. Milnor, “On spaces having the homotopy type of a $CW$-complex”, Trans. Amer. Math. Soc., 90 (1959), 272–280 | DOI | MR
[81] C. B. Morrey, Multiple integrals in the calculus of variations, Amer. Math. Soc. Colloq. Lectures, Amherst, Mass., 1964
[82] C. B. Morrey, J. Eells, “A variational method in the theory of harmonic integrals”, Ann. of Math., 63 (1956), 91–128 | DOI | MR | Zbl
[83] M. Morse, “Abstract variational theory”, Memor. Sci. Math., 92 (1939)
[84] M. Morse, “Recent advances in variational theory in the large”, Proc. Internat. Congress Math., Cambridge, Mass., 1950, 143–156 | MR
[85] J. Moser, “A new technique for the construction of solutions of nonlinear differential equations”, Proc. Nat. Acad. Sci. U.S.A., 47 (1961), 1824–1831 | DOI | MR | Zbl
[86] F. J. Murray, “On complementary manifolds and projections in space $L_p$ and $l_p$”, Trans. Amer. Math. Soc., 41 (1937), 138–152 | DOI | MR
[87] S. B. Myers, “Algebras of differentiable functions”, Proc. Amer. Math. Soc., 5 (1954), 917–922 | DOI | MR | Zbl
[88] M. Nagumo, “Degree of mapping in convex linear topological spaces”, Amer. Journ. Math., 73 (1951), 497–511 | DOI | MR | Zbl
[89] I. Namioka, “A duality in function spaces”, Trans. Amer. Math. Soc., 115 (1965) | DOI | MR | Zbl
[90] G. Neubauer, “Über den Index abgeschlossener Operatoren in Banachräumen”, Math. Ann., 160 (1965), 93–130 | DOI | MR | Zbl
[91] R. S. Palais, “Morse theory on Hilbert manifolds”, Topology, 2 (1963), 299–340 | DOI | MR | Zbl
[92] R. S. Palais, “On the homotopy type of certain groups of operators”, Topology, 3 (1965), 271–279 | DOI | MR | Zbl
[93] R. S. Palais, Lectures on differential topology of infinite dimensional manifolds, Mimeographed notes, Brandeis University, Waltham, Mass., 1964–1965
[94] R. S. Palais, “Homotopy theory of infinite dimensional manifolds”, Topology, 5, Mimeographed notes, Brandeis University, Waltham, Mass., 1966, 1–16 | MR
[95] R. S. Palais, “Lusternik-Schnirelman theory on Banach manifolds”, Topology, 5, Mimeographed notes, Brandeis University, Waltham, Mass., 1966, 115–132 | MR
[96] R. S. Palais, S. Smale, “A generalized Morse theory”, Bull. Amer. Math. Soc., 70 (1964), 165–172 | DOI | MR | Zbl
[97] L. E. Pursell, M. E. Shanks, “The Lie algebra of a smooth manifold”, Proc. Amer. Math. Soc., 5 (1954), 468–472 | DOI | MR | Zbl
[98] C. R. Putnam, A. Wintner, “The ortogonal group in Hilbert space”, Amer. Journ. Math., 74 (1952), 52–78 | DOI | MR | Zbl
[99] G. Restrepo, “Differentiable norms in Banach spaces”, Bull. Amer. Math. Soc., 70 (1964), 413–414 | DOI | MR | Zbl
[100] E. H. Rothe, “Zur Theorie der topologichen Ordnung und der Vectorfelder in Banachschen Räumen”, Compositio Math., 5 (1937–1938), 177–197 | MR
[101] E. H. Rothe, “Critical points and gradient fields of scalars in Hilbert space”, Acta Math., 85 (1951), 73–98 | DOI | MR | Zbl
[102] E. H. Rothe, “Leray-Schauder index and Morse type numbers in Hilbert space”, Ann. of Math., 55 (1952), 433–467 ; 58 (1953), 593–594 | DOI | MR | Zbl | DOI | MR | Zbl
[103] E. H. Rothe, “Gradient mappings”, Bull. Amer. Math. Soc., 59 (1953), 5–19 | DOI | MR
[104] E. H. Rothe, “Critical point theory in Hilbert space under general boundary conditions”, Journ. Math. Anal. Appl., 11 (1965), 357–409 | DOI | MR | Zbl
[105] H. L. Royden, “Function algebras”, Bull. Amer. Math. Soc., 69 (1963), 281–298 | DOI | MR | Zbl
[106] A. Sard, “Hausdorf measure of critical images on Banach manifolds”, Amer. Journ Math., 87 (1965), 158–174 | DOI | MR | Zbl
[107] J. Schauder, “Über den Zusammenhangzwischen der Eindeutigkeit und Lösbarkeit”, Math. Ann., 106 (1932), 661–721 | DOI | MR
[108] J. Schauder, “Invarianz des Gebietes in Funktionalräumen”, Studia Math, 1 (1929), 123–139 | Zbl
[109] J. T. Schwartz, “Generalising the Lusternik-Schnirelman theory of critical points”, Comm. Pure Appl. Math., 17 (1964), 307–315 | DOI | MR | Zbl
[110] J. T. Schwartz, Nonlinear functional analysis, Mimeographed notes, New York University, New York, 1963–1964 | Zbl
[111] I. Segal, “Differential operators in the manifolds of solutions of a non-linear differential equations”, Journ. Math. Pures Appl., 44 (1965), 71–132 | MR | Zbl
[112] S. Smale, “Morse theory and a non-linear generalisation of the Dirichlet problem”, Ann. of Math., 80 (1964), 382–396 | DOI | MR | Zbl
[113] S. Smale, “An infinite dimensional version of Sard's theorem”, Amer. Journ. Math., 87 (1965), 861–866 | DOI | MR | Zbl
[114] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950
[115] E. H. Spanier, “Duality and $S$-theory”, Bull. Amer. Math. Soc., 62 (1956), 194–203 | DOI | MR | Zbl
[116] N. E. Steenrod, The topology of fibre bundles, Princeton Univ. Press, Princeton, N. J., 1951 ; N. Stinrod, Topologiya kosykh proizvedenii, IL, M., 1953 | MR | Zbl
[117] A. S. Shvarts, “K gomotopicheskoi teorii banakhovykh prostranstv”, DAN, 154 (1964), 61–63 | Zbl
[118] J. Tomiyama, M. Takesaki, “Applications of fibre bundles to the certain class of $C^*$-algebras”, Tôhoku Math. Journ., 13 (1961), 498–522 | DOI | MR | Zbl
[119] M. M. Vainberg, Variatsionnye metody issledovaniya nelineinykh operatorov, Gostekhizdat, M., 1956
[120] W. T. Van Est, T. J. Korthagen, “Non-enlargible Lie algebras”, Nederl. Acad. Wetensch. Proc. Ser. A, 26 (1964), 15–31 | MR
[121] L. Waelbroek, “Le calcul symbolique dans les algebres commutatives”, Journ. Math. Pures Appl., 33 (1954), 147–186 | MR
[122] A. Wasserman, “Morse theory for $G$-manifolds”, Bull. Amer. Math. Soc., 71 (1965), 384–388 | DOI | MR | Zbl
[123] R. Wood, “Banach algebras and Bott periodicity”, Topology, 4 (1965), 371–389 | DOI | MR