On the expansion of quasi-periodic motions in convergent power series
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 24 (1969) no. 2 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1969_24_2_a5,
     author = {J. K. Moser},
     title = {On the expansion of quasi-periodic motions in convergent power series},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1969},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1969_24_2_a5/}
}
TY  - JOUR
AU  - J. K. Moser
TI  - On the expansion of quasi-periodic motions in convergent power series
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1969
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_1969_24_2_a5/
LA  - ru
ID  - RM_1969_24_2_a5
ER  - 
%0 Journal Article
%A J. K. Moser
%T On the expansion of quasi-periodic motions in convergent power series
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1969
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/RM_1969_24_2_a5/
%G ru
%F RM_1969_24_2_a5
J. K. Moser. On the expansion of quasi-periodic motions in convergent power series. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 24 (1969) no. 2. http://geodesic.mathdoc.fr/item/RM_1969_24_2_a5/

[1] V. I. Arnold, “Malye znamenateli. 1: Ob otobrazheniyakh okruzhnosti na sebya”, Izv. AN, ser. matem., 25:1 (1961), 21–86 | MR

[2] V. I. Arnold, “Dokazatelstvo teoremy A. N. Kolmogorova o sokhranenii uslovno-periodicheskikh dvizhenii pri malom izmenenii funktsii Gamiltona”, UMN, 18:5 (113) (1963), 13–40 | MR

[3] K. Sharle, Nebesnaya mekhanika, «Nauka», M., 1966, gl. IX, §§ 5 i 6 | MR

[4] N. Dzhekobson, Algebry Li, «Mir», M., 1964 | MR

[5] A. N. Kolmogorov, “O sokhranenii uslovno-periodicheskikh dvizhenii pri malom izmenenii funktsii Gamiltona”, DAN, 98 (1954), 527–530 | MR | Zbl

[6] V. K. Melnikov, O nekotorykh sluchayakh sokhraneniya uslovno-periodicheskikh dvizhenii pri malom izmenenii funktsii Gamiltona, preprint, Ob'edinennyi institut yadernykh issledovanii, Dubna, 1965 | MR

[7] J. Moser, “A rapidly convergent iteration method and non-linear differential equations. I; II”, Annali della Scuola Norm. Super. de Pisa ser. III, 20:2 (1966), 265–315 ; 20:3 (1966), 499–535 ; UMN, 23:4 (1968), 179–238 | MR | MR | MR

[8] J. Moser, “On the theory of quasi-periodic motions”, Lectures held at Stanford Univ. Aug., 1965, SIAM Review, 8:2 (1966), 145–172 | DOI | Zbl

[9] H. Poincaré, Méthodes nouvelles de la mécanique célèste, Vol. 2, Chap. 9, Gauthier - Villars, Paris, 1893 | Zbl

[10] L. S. Pontryagin, Nepreryvnye gruppy, Gostekhizdat, M., 1954, gl. 10 | MR

[11] K. L. Zigel, Lektsii po nebesnoi mekhanike, IL, M., 1959, § 24, 232

[12] S. Sternberg, “Infinite Lie groups and the formal aspects of dynamical systems”, Journ. Math. Mech., 10 (1961), 451–474 | MR | Zbl

[13] H. von Zeipel, Arkiv. Mat. Astron. Fysik., 11; 12; 13 (1916–1917) | Zbl

[14] W. Jefferys, J. Moser, “Quasi-periodic solutions for the Three-Body Problem”, The Astron. Journ., 71:7 (1966), 568–578 | DOI | MR

[15] B. B. Liberman, “Existence of quasiperiodic solutions to the three-body problem”, Differential equations and dynamical system, Acad. Press, New Iork–London, 1967, 27–34 | MR

[16] V. I. Arnold, “Malye znamenateli i problemy ustoichivosti dvizheniya v klassicheskoi i nebesnoi mekhanike”, UMN, 18:6 (114) (1963), 91–192 | MR

[17] V. K. Melnikov, “Ob odnomz semeistve uslovno-periodicheskikh reshenii sistemy Gamiltona”, DAN, 181:3 (1968), 546–549