The existence of a~solution of an ill-posed problem is equivalent to the convergence of a~regularization process
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 23 (1968) no. 3
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
@article{RM_1968_23_3_a13,
     author = {V. P. Maslov},
     title = {The existence of a~solution of an ill-posed problem is equivalent to the convergence of a~regularization process},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1968_23_3_a13/}
}
                      
                      
                    TY - JOUR AU - V. P. Maslov TI - The existence of a~solution of an ill-posed problem is equivalent to the convergence of a~regularization process JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1968 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1968_23_3_a13/ LA - ru ID - RM_1968_23_3_a13 ER -
%0 Journal Article %A V. P. Maslov %T The existence of a~solution of an ill-posed problem is equivalent to the convergence of a~regularization process %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1968 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_1968_23_3_a13/ %G ru %F RM_1968_23_3_a13
V. P. Maslov. The existence of a~solution of an ill-posed problem is equivalent to the convergence of a~regularization process. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 23 (1968) no. 3. http://geodesic.mathdoc.fr/item/RM_1968_23_3_a13/
