The existence of a~solution of an ill-posed problem is equivalent to the convergence of a~regularization process
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 23 (1968) no. 3

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{RM_1968_23_3_a13,
     author = {V. P. Maslov},
     title = {The existence of a~solution of an ill-posed problem is equivalent to the convergence of a~regularization process},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1968_23_3_a13/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - The existence of a~solution of an ill-posed problem is equivalent to the convergence of a~regularization process
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1968
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1968_23_3_a13/
LA  - ru
ID  - RM_1968_23_3_a13
ER  - 
%0 Journal Article
%A V. P. Maslov
%T The existence of a~solution of an ill-posed problem is equivalent to the convergence of a~regularization process
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1968
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1968_23_3_a13/
%G ru
%F RM_1968_23_3_a13
V. P. Maslov. The existence of a~solution of an ill-posed problem is equivalent to the convergence of a~regularization process. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 23 (1968) no. 3. http://geodesic.mathdoc.fr/item/RM_1968_23_3_a13/