@article{RM_1967_22_4_a3,
author = {R. Osserman},
title = {Minimal surfaces},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
year = {1967},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1967_22_4_a3/}
}
R. Osserman. Minimal surfaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 22 (1967) no. 4. http://geodesic.mathdoc.fr/item/RM_1967_22_4_a3/
[1] F. J. Almgren, The theory of varifolds; a variational calculus in the large for the $k$-dimensional area integrand, 1967 | Zbl
[2] F. J. Almgren, “Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem”, Ann. of Math., 1967 | Zbl
[3] F. J. Almgren, Plateau's problem, W. A. Benjamin, Inc., New York, 1966 | Zbl
[4] L. V. Ahlfors, L. Sario, Riemann surfaces, Princeton University Press, Princeton, 1960 | MR
[5] E. F. Beckenbach, “Minimal surfaces in Euclidean $n$-space”, Amer. Journ. Math., 55 (1933), 458–468 | DOI | MR
[6] S. N. Bernshtein, “O poverkhnostyakh, opredelyaemykh posredstvom ikh srednei ili polnoi krivizny”, Sobr. soch., t. III, Izd-vo AN SSSR, 1960, 122–140
[7] S. N. Bernshtein, “Ob uravneniyakh variatsionnogo ischisleniya”, Sobr. soch., t. III, Izd-vo AN SSSR, 1960, 191–241
[8] S. N. Bernshtein, “Ob odnoi geometricheskoi teoreme i ee prilozheniyakh k uravneniyam v chastnykh proizvodnykh ellipticheskogo tipa”, Sobr. soch., t. III, Izd-vo AN SSSR, 1960, 251–258
[9] L. Bers, “Isolated singularities of minimal surfaces”, Ann. of Math. (2), 53 (1951), 364–386 | DOI | MR | Zbl
[10] L. Bers, “Abelian minimal surfaces”, Journ. Analyse Math., 1 (1951), 43–58 | DOI | MR | Zbl
[11] L. Bers, “Non-linear elliptic equations without non-linear entire solutions”, Journ. Rational Mech. Anal., 3 (1954), 767–787 | MR | Zbl
[12] L. Bianchi, Lezioni di geometria differenziale, V. II, Pisa, 1903
[13] H. Weyl, Meromorphic functions and analytic curves, Ann. of Math. Studies, 12, Princeton University Press, Princeton, 1943 | MR | Zbl
[14] H. Werner, “Das Problem von Douglas für Flächen konstanter mittlerer Krümmung”, Math. Ann., 133 (1957), 303–319 | DOI | MR | Zbl
[15] P. R. Garabedian, Partial differential equations, Wiley, New York, 1964 | MR | Zbl
[16] A. Gray, “Minimal varieties and almost Hermitian submanifolds”, Michigan Math. Journ., 12 (1965), 273–287 | DOI | MR | Zbl
[17] G. Darboux, Leçons sur la théorie générale des surfaces, Première partie, Gauthier-Villars, Paris, 1941, nouveau tirage | Zbl
[18] H. Jenkins, “On two-dimensional variational problems in parametric form”, Arch. Rational Mech. Anal., 8 (1961), 181–206 | DOI | MR | Zbl
[19] H. Jenkins, “On quasi-linear elliptic equations which arise from variational problems”, Journ. Math. Mech., 10 (1961), 705–728 | MR
[20] H. Jenkins, J. Serrin, “Variational problems of minimal surface type, I”, Arch. Rational Mech. Anal., 12 (1963), 185–212 | DOI | MR | Zbl
[21] H. Jenkins, J. Serrin, “Variational problems of minimal surface type. II: Boundary value problems for the minimal surface equation”, Arch. Rational Mech. Anal., 21 (1965/66), 321–342 | MR
[22] E. de Giorgi, “Una extensione del teorema di Bernstein”, Ann. Scuola Norm. Sup. Pisa, 19 (1965), 79–85 | MR
[23] E. de Giorgi, G. Stampacchia, “Sulle singolarità eleminabili delle ipersuperficie minimali”, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. (ser. 8), 38 (1965), 352–357 | MR | Zbl
[24] J. Douglas, “Solution of the problem of Plateau”, Trans. Amer. Math. Soc., 33 (1931), 263–321 | DOI | MR
[25] J. Douglas, “Minimal surfaces of higher topological structure”, Ann. of Math. (2), 40 (1939), 205–298 | DOI | MR
[26] K. Jörgens, “Über die Lösungen der Differentialgleichung $rt-s^2=1$”, Math. Ann., 127 (1954), 130–134 | DOI | MR | Zbl
[27] T. Klotz, R. Osserman, “On complete surfaces in $E^3$ with constant mean curvature”, Comment. Math. Helv., 1967 | MR
[28] T. Klotz, L. Sario, “Existence of complete minimal surfaces of arbitrary connectivity and genus”, Proc. Nat. Acad. Sci., 54 (1965), 42–44 | DOI | MR | Zbl
[29] R. Courant, “Plateau's problem and Dirichlet's principle”, Ann. of Math., 38 (1937), 679–725 | DOI | MR
[30] R. Courant, Dirichlet's principle, conformal mapping and minimal surfaces, Interscience, New York, 1950 | MR | Zbl
[31] R. Courant, D. Hilbert, Methods of mathematical physics, vol. II, Interscience, New York, 1962 | MR | Zbl
[32] P. Lévy, “Le problème de Plateau”, Math., 23 (1948), 1–45 | MR | Zbl
[33] H. Lewy, “A priori limitations for solutions of Monge-Ampère equations, II”, Trans. Amer. Math. Soc., 41 (1937), 365–374 | DOI | MR
[34] H. Lewy, Aspects of the calculus of variations, Notes by J. W. Green after lectures by Hans Lewy, Univ. of California Press, Berkeley, 1939 | Zbl
[35] Ü. Lumiste, “On the theory of two-dimensional minimal surfaces. I; II; III; IV”, Tartu Riikl. Ül. Tometised, 102 (1961), 3–15 ; 16–28 ; 129 (1962), 74–89 ; 90–102 | MR | Zbl | MR | Zbl
[36] G. R. MacLane, “On asymptotic values”, Notices Amer. Math. Soc., 10 (1963)
[37] M. Miranda, “Un teorema di esistenza e unicità per il problema dell'area minima in $n$ variabili”, Ann. Scuola Normale Sup. Pisa (Ser. 3), 19 (1965), 233–250 | MR
[38] C. B. Morrey, “The problem of Plateau on a Riemannian manifold”, Ann. of Math. (2), 49 (1948), 807–851 | DOI | MR | Zbl
[39] C. B. Morrey, “The higher-dimensional Plateau problem on a Riemanhian manifold”, Proc. Nat. Acad. Sci. USA, 54 (1965), 1029–1035 | DOI | MR | Zbl
[40] C. H. Müntz, “Die Losung des Plateauschen Problems über konvexen Bereichen”, Math. Ann., 94 (1925), 54–96 | MR
[41] J. C. C. Nitsche, “Über eine mit der Minimalflächengleichung zusammenhängende analytische Funktion und den Bernsteinschen Satz”, Arch. Math., 7 (1965), 417–419 | DOI | MR
[42] J. C. C. Nitsche, “Elementary proof of Bernstein's theorem on minimal surfaces”, Ann. of Math. (2), 66 (1957), 543–544 | DOI | MR | Zbl
[43] J. C. C. Nitsche, “A characterization of the catenoid”, J. Math. Mech., 11 (1962), 293–302 | MR
[44] J. C. C. Nitsche, “On new results in the theory of minimal surfaces”, Bull. Amer. Math. Soc., 71 (1965), 195–270 ; Matematika. Sb. per., 11:3 (1967), 37–100 | DOI | MR | Zbl
[45] J. C. C. Nitsche, “Über ein verallgemeinertes Dirichletsches Problem für die Minimalflächengleichung und hebbare Unstetigkeiten ihrer Lösungen”, Math. Ann., 158 (1965), 203–214 | DOI | MR | Zbl
[46] J. C. C. Nitsche, “On the non-solvability of Dirichlet's problem for the minimal surface equation”, Journ. Math. Mech., 14 (1965), 779–788 | MR | Zbl
[47] J. C. C. Nitsche, J. Nitsche, “Über reguläre Variationsprobleme”, Rend. Circ. Matem. Palermo (2), 8 (1959), 346–353 | DOI | MR
[48] R. Osserman, “Proof of a conjecture of Nirenberg”, Comm. Pure Appl. Math., 12 (1959), 229–232 | DOI | MR | Zbl
[49] R. Osserman, “On the Gauss curvature of minimal surfaces”, Trans. Amer. Math. Soc., 96 (1960), 115–128 | DOI | MR | Zbl
[50] R. Osserman, “Minimal surfaces in the large”, Comment. Math. Helv., 35 (1961), 65–76 | DOI | MR | Zbl
[51] R. Osserman, “On complete minimal surfaces”, Arch. Rational Mech. Anal., 13 (1963), 392–404 | DOI | MR | Zbl
[52] R. Osserman, “Global properties of minimal surfaces in $E^3$ and $E^n$”, Ann. of Math. (2), 80 (1964), 340–364 | DOI | MR | Zbl
[53] R. Osserman, “Global properties of classical minimal surfaces”, Duke Math. Journ., 32 (1965), 565–573 | DOI | MR | Zbl
[54] R. Osserman, “Le théorème de Bernstein pour des systèmes”, Compt. Rend. Acad. Sci. (Paris), ser. A, 262 (1966), 571–574 | MR | Zbl
[55] M. Pini, “B-Kugelbilder reeler Minimalflächen in $R^4$”, Math. Z., 59 (1953), 290–295 | DOI | MR
[56] M. Pini, “Minimalflächen fester Gausscher Krümmung”, Math. Ann., 136 (1958) | MR | Zbl
[57] M. Pini, “Über einen Satz von G. Ricci-Curbastro und die Gaussche Krümmung der Minimalflächen, II”, Arch. Math., 15 (1964), 232–240 | DOI | MR
[58] T. Radó, “Über den analytischen Character der Minimalflächen”, Math. Z., 24 (1925) | Zbl
[59] T. Radó, “The problem of the least area and the problem of Plateau”, Math. Z., 32 (1930), 763–796 | DOI | MR
[60] T. Radó, On the problem of Plateau, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 1933 | MR
[61] E. R. Reifenberg, “Solution of the Plateau problem for $m$-dimensional surfaces of varying topological type”, Acta Math., 104 (1960), 1–92 | DOI | MR | Zbl
[62] E. R. Reifenberg, “An epiperimetric inequality related to the analyticity of minimal surfaces”, Ann. of Math., 80 (1964), 1–14 | DOI | MR | Zbl
[63] E. R. Reifenberg, “On the analyticity of minimal surfaces”, Ann. of Math., 80 (1964), 15–21 | DOI | MR | Zbl
[64] J. Serrin, “A priori estimates for solutions of the minimal surface equation”, Arch. Rational Mech. Anal., 14 (1963), 376–383 | DOI | MR | Zbl
[65] J. Serrin, “Removable singularities of elliptic equations, II”, Arch. Rational Mech. Anal., 1967
[66] H. Federer, W. H. Fleming, “Normal and entegral currents”, Ann. of Math., 72 (1960), 458–520 | DOI | MR | Zbl
[67] R. Finn, “Isolated singularities of solutions of non-linear partial differential equations”, Trans. Amer. Math. Soc., 75 (1953), 383–404 | DOI | MR
[68] R. Finn, “On equations of minimal surface type”, Ann. of Math. (2), 60 (1954), 397–416 | DOI | MR | Zbl
[69] R. Finn, “On a problem of type, with application to elliptic partial differential equations”, Journ. Rational Mech. Anal., 3 (1954), 789–799 | MR | Zbl
[70] R. Finn, “New estimates for equations of minimal surface type”, Arch. Rational Mech. Anal., 14 (1963), 337–375 | DOI | MR | Zbl
[71] R. Finn, “Remarks relevant to minimal surfaces and to surfaces of prescribed mean curvature”, Journ. Anal. Math., 14 (1965), 139–160 | DOI | MR | Zbl
[72] R. Finn, “On a class of conformal metrics, with application to differential geometry in the large”, Comment. Math. Helv., 40 (1965), 1–30 | DOI | MR | Zbl
[73] R. Finn, R. Osserman, “On the Gauss curvature of non-parametric minimal surfaces”, Journ. Anal. Math., 12 (1964), 351–364 | DOI | MR | Zbl
[74] W. H. Fleming, “An example in the problem of least area”, Proc. Amer. Math. Soc., 7 (1956), 1063–1074 | DOI | MR
[75] W. H. Fleming, “On the oriented Plateau problem”, Rend. Circ. Mat. Palermo (2), 11 (1962), 69–90 | DOI | MR | Zbl
[76] K. Voss, “Über vollständige Minimalflächen”, L'Enseignement Math., 10 (1964)
[77] T. Frankel, “On the fundamental group of a compact minimal submanifold”, Ann. of Math., 83 (1966), 68–73 | DOI | MR | Zbl
[78] E. Heinz, “Über die Lösungen der Minimalflächengleichung”, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl., II (1952), 51–56 | MR
[79] E. Heinz, “Über die Existenz einer Fläche konstanter mittlere Krümmung bei vorgegebener Berandung”, Math. Ann., 127 (1954), 258–287 | DOI | MR | Zbl
[80] E. Hopf, “On an inequality for minimal surfaces $z = z (x, y)$”, Journ. Rational Mech. Anal., 2 (1953), 519–522 ; 801–802 | MR | Zbl | Zbl
[81] A. Huber, “On subharmonic functions and differential geometry in the large”, Comment. Math. Helv., 32 (1957), 13–72 | DOI | MR | Zbl
[82] Y. W. Chen, “Branch points, poles and planar points of minimal surfaces in $R^3$”, Ann. of Math. (2), 49 (1948), 790–806 | DOI | MR | Zbl
[83] S. S. Chern, “Minimal surfaces in an Euclidean space of $N$ dimensions”, Differential and Combinatorial Topology, A Symposium in Honor of Marston Morse, Princeton University Press, Princeton, N.J., 1965, 187–198 | MR | Zbl
[84] S. S. Chern, “On the curvatures of a piece of hypersurface in Euclidean space”, Abh. Math. Seminar Univ. Hamburg, 29 (1965), 77–91 | DOI | MR | Zbl