Some properties of Cesàro means of Fourier series
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 21 (1966) no. 1
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1966_21_1_a8,
     author = {L. V. Zhizhiashvili},
     title = {Some properties of {Ces\`aro} means of {Fourier} series},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1966},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1966_21_1_a8/}
}
TY  - JOUR
AU  - L. V. Zhizhiashvili
TI  - Some properties of Cesàro means of Fourier series
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1966
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_1966_21_1_a8/
LA  - ru
ID  - RM_1966_21_1_a8
ER  - 
%0 Journal Article
%A L. V. Zhizhiashvili
%T Some properties of Cesàro means of Fourier series
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1966
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/RM_1966_21_1_a8/
%G ru
%F RM_1966_21_1_a8
L. V. Zhizhiashvili. Some properties of Cesàro means of Fourier series. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 21 (1966) no. 1. http://geodesic.mathdoc.fr/item/RM_1966_21_1_a8/

[1] L. V. Zhizhiashvili, “O nekotorykh svoistvakh $(C,\alpha)$ srednikh ryadov Fure i sopryazhennykh, trigonometricheskikh ryadov”, Matem. sb., 63(105):4 (1964), 489–504

[2] L. V. Zhizhiashvili, “Sopryazhennye funktsii dvukh peremennykh i dvoinye sopryazhennye trigonometricheskie ryady”, DAN, 155:3 (1964), 521–523 | Zbl

[3] L. Cesari, “Sulle eerie di Fourier della fonzioni Lipshitziane di piu variabili”, Ann. Scuola Norm. Super., Pisa, 2:7 (1938), 279–295 | MR

[4] I. E. Zhak, “O sopryazhennykh dvoinykh trigonometricheskikh ryadakh”, Matem. sb., 31(73) (1952), 469–484

[5] J. Hesegawa, “On summabilities of double Fourier series”, Kodai Math. Semin. Repts 15, 1963, no. 1, 226–238 | DOI | MR

[6] S. Saks, “Remark on the differentiability of the Lebesgue indefinite integral”, Fund. Math., 22 (1934), 257–261