Proof of a~geometric theorem of Jung, and its analogue in the theory of stochastic processes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 20 (1965) no. 3
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{RM_1965_20_3_a16,
author = {T. A. Timan},
title = {Proof of a~geometric theorem of {Jung,} and its analogue in the theory of stochastic processes},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {1965},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1965_20_3_a16/}
}
TY - JOUR AU - T. A. Timan TI - Proof of a~geometric theorem of Jung, and its analogue in the theory of stochastic processes JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1965 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1965_20_3_a16/ LA - ru ID - RM_1965_20_3_a16 ER -
T. A. Timan. Proof of a~geometric theorem of Jung, and its analogue in the theory of stochastic processes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 20 (1965) no. 3. http://geodesic.mathdoc.fr/item/RM_1965_20_3_a16/