An example of a completely continuous integral operator from $L_p$ to $L_p$ with positive kernel not belonging to $L_r$ $(r>1)$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 18 (1963) no. 4
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_1963_18_4_a14,
author = {D. V. Salekhov},
title = {An example of a~completely continuous integral operator from $L_p$ to $L_p$ with positive kernel not belonging to $L_r$ $(r>1)$},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
year = {1963},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1963_18_4_a14/}
}
TY - JOUR AU - D. V. Salekhov TI - An example of a completely continuous integral operator from $L_p$ to $L_p$ with positive kernel not belonging to $L_r$ $(r>1)$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1963 VL - 18 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_1963_18_4_a14/ LA - ru ID - RM_1963_18_4_a14 ER -
%0 Journal Article %A D. V. Salekhov %T An example of a completely continuous integral operator from $L_p$ to $L_p$ with positive kernel not belonging to $L_r$ $(r>1)$ %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1963 %V 18 %N 4 %U http://geodesic.mathdoc.fr/item/RM_1963_18_4_a14/ %G ru %F RM_1963_18_4_a14
D. V. Salekhov. An example of a completely continuous integral operator from $L_p$ to $L_p$ with positive kernel not belonging to $L_r$ $(r>1)$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 18 (1963) no. 4. http://geodesic.mathdoc.fr/item/RM_1963_18_4_a14/