On the maximal number of mutually disjoint, pairwise homeomorphic figures which can be packed in~3-space
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 17 (1962) no. 3
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{RM_1962_17_3_a3,
author = {V. V. Grushin and V. P. Palamodov},
title = {On the maximal number of mutually disjoint, pairwise homeomorphic figures which can be packed in~3-space},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {1962},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1962_17_3_a3/}
}
TY - JOUR AU - V. V. Grushin AU - V. P. Palamodov TI - On the maximal number of mutually disjoint, pairwise homeomorphic figures which can be packed in~3-space JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1962 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1962_17_3_a3/ LA - ru ID - RM_1962_17_3_a3 ER -
%0 Journal Article %A V. V. Grushin %A V. P. Palamodov %T On the maximal number of mutually disjoint, pairwise homeomorphic figures which can be packed in~3-space %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1962 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_1962_17_3_a3/ %G ru %F RM_1962_17_3_a3
V. V. Grushin; V. P. Palamodov. On the maximal number of mutually disjoint, pairwise homeomorphic figures which can be packed in~3-space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 17 (1962) no. 3. http://geodesic.mathdoc.fr/item/RM_1962_17_3_a3/