On the maximal number of mutually disjoint, pairwise homeomorphic figures which can be packed in~3-space
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 17 (1962) no. 3

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{RM_1962_17_3_a3,
     author = {V. V. Grushin and V. P. Palamodov},
     title = {On the maximal number of mutually disjoint, pairwise homeomorphic figures which can be packed in~3-space},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {1962},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1962_17_3_a3/}
}
TY  - JOUR
AU  - V. V. Grushin
AU  - V. P. Palamodov
TI  - On the maximal number of mutually disjoint, pairwise homeomorphic figures which can be packed in~3-space
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1962
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1962_17_3_a3/
LA  - ru
ID  - RM_1962_17_3_a3
ER  - 
%0 Journal Article
%A V. V. Grushin
%A V. P. Palamodov
%T On the maximal number of mutually disjoint, pairwise homeomorphic figures which can be packed in~3-space
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1962
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1962_17_3_a3/
%G ru
%F RM_1962_17_3_a3
V. V. Grushin; V. P. Palamodov. On the maximal number of mutually disjoint, pairwise homeomorphic figures which can be packed in~3-space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 17 (1962) no. 3. http://geodesic.mathdoc.fr/item/RM_1962_17_3_a3/