The smallest field in which can be realized all complex representations of a~$p$-group of odd order
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 16 (1961) no. 3
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
@article{RM_1961_16_3_a5,
     author = {S. D. Berman},
     title = {The smallest field in which can be realized all complex representations of a~$p$-group of odd order},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1961_16_3_a5/}
}
                      
                      
                    TY - JOUR AU - S. D. Berman TI - The smallest field in which can be realized all complex representations of a~$p$-group of odd order JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1961 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1961_16_3_a5/ LA - ru ID - RM_1961_16_3_a5 ER -
%0 Journal Article %A S. D. Berman %T The smallest field in which can be realized all complex representations of a~$p$-group of odd order %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1961 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_1961_16_3_a5/ %G ru %F RM_1961_16_3_a5
S. D. Berman. The smallest field in which can be realized all complex representations of a~$p$-group of odd order. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 16 (1961) no. 3. http://geodesic.mathdoc.fr/item/RM_1961_16_3_a5/
