On groups all of whose subgroups are cyclic
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 16 (1961) no. 2

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{RM_1961_16_2_a9,
     author = {M. E. Zel'manzon},
     title = {On groups all of whose subgroups are cyclic},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1961_16_2_a9/}
}
TY  - JOUR
AU  - M. E. Zel'manzon
TI  - On groups all of whose subgroups are cyclic
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1961
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1961_16_2_a9/
LA  - ru
ID  - RM_1961_16_2_a9
ER  - 
%0 Journal Article
%A M. E. Zel'manzon
%T On groups all of whose subgroups are cyclic
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1961
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1961_16_2_a9/
%G ru
%F RM_1961_16_2_a9
M. E. Zel'manzon. On groups all of whose subgroups are cyclic. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 16 (1961) no. 2. http://geodesic.mathdoc.fr/item/RM_1961_16_2_a9/