Antipalindromická čísla
Rozhledy matematicko-fyzikální, Tome 94 (2019) no. 1, pp. 2-10
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Každý zná jistě palindromy: slova, která se čtou stejně zepředu i pozpátku (např. krk, rotor, nepotopen). Palindromická čísla, tj. čísla, která mají palindromický zápis v nějaké přirozené bázi, jsou dobře matematicky prostudovaná. V článku představíme pojem antipalindromická čísla a poznatky o nich a porovnáme je s palindromickými čísly. Zejména vypíchneme překvapivý výsledek týkající se dělitelnosti a prvočísel mezi antipalindromickými čísly.
Každý zná jistě palindromy: slova, která se čtou stejně zepředu i pozpátku (např. krk, rotor, nepotopen). Palindromická čísla, tj. čísla, která mají palindromický zápis v nějaké přirozené bázi, jsou dobře matematicky prostudovaná. V článku představíme pojem antipalindromická čísla a poznatky o nich a porovnáme je s palindromickými čísly. Zejména vypíchneme překvapivý výsledek týkající se dělitelnosti a prvočísel mezi antipalindromickými čísly.
Classification :
00A08, 97F60
@article{RMF_2019_94_1_a1,
author = {Dvo\v{r}\'akov\'a, \v{L}ubom{\'\i}ra and Ryz\'ak, David},
title = {Antipalindromick\'a \v{c}{\'\i}sla},
journal = {Rozhledy matematicko-fyzik\'aln{\'\i}},
pages = {2--10},
year = {2019},
volume = {94},
number = {1},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/RMF_2019_94_1_a1/}
}
Dvořáková, Ľubomíra; Ryzák, David. Antipalindromická čísla. Rozhledy matematicko-fyzikální, Tome 94 (2019) no. 1, pp. 2-10. http://geodesic.mathdoc.fr/item/RMF_2019_94_1_a1/
[1] Joyce, J.: Ulysses. Sylvia Beach’s Shakespeare and Company, Paris, 1922.
[2] Ryzák, D.: Antipalindromy. SOČ práce, obor Matematika a statistika, 40 (2018),
[3]