Dvě úlohy z planimetrie
Rozhledy matematicko-fyzikální, Tome 93 (2018) no. 4, pp. 35-36 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The first example deals with the following question: In how many nonintersecting triangles whose vertices are in the vertices of convex $n$-gon and in $m$ given points inside the $n$-gon is the $n$-gon cut? In the second the set of all points $X$ with the following property is found: If you go from $X$ to given point $B$ in a straight line, the distance to another given point $A$ increases.
The first example deals with the following question: In how many nonintersecting triangles whose vertices are in the vertices of convex $n$-gon and in $m$ given points inside the $n$-gon is the $n$-gon cut? In the second the set of all points $X$ with the following property is found: If you go from $X$ to given point $B$ in a straight line, the distance to another given point $A$ increases.
Classification : 00A08, 97D50
@article{RMF_2018_93_4_a6,
     author = {Calda, Emil},
     title = {Dv\v{e} \'ulohy z planimetrie},
     journal = {Rozhledy matematicko-fyzik\'aln{\'\i}},
     pages = {35--36},
     year = {2018},
     volume = {93},
     number = {4},
     language = {cs},
     url = {http://geodesic.mathdoc.fr/item/RMF_2018_93_4_a6/}
}
TY  - JOUR
AU  - Calda, Emil
TI  - Dvě úlohy z planimetrie
JO  - Rozhledy matematicko-fyzikální
PY  - 2018
SP  - 35
EP  - 36
VL  - 93
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RMF_2018_93_4_a6/
LA  - cs
ID  - RMF_2018_93_4_a6
ER  - 
%0 Journal Article
%A Calda, Emil
%T Dvě úlohy z planimetrie
%J Rozhledy matematicko-fyzikální
%D 2018
%P 35-36
%V 93
%N 4
%U http://geodesic.mathdoc.fr/item/RMF_2018_93_4_a6/
%G cs
%F RMF_2018_93_4_a6
Calda, Emil. Dvě úlohy z planimetrie. Rozhledy matematicko-fyzikální, Tome 93 (2018) no. 4, pp. 35-36. http://geodesic.mathdoc.fr/item/RMF_2018_93_4_a6/

[1] Bušek, I., Kubínová, M., Novotná, J.: Matematika pro 9. ročník základní školy. Prometheus, Praha, 1994.