Dvě úlohy z planimetrie
Rozhledy matematicko-fyzikální, Tome 93 (2018) no. 4, pp. 35-36
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The first example deals with the following question: In how many nonintersecting triangles whose vertices are in the vertices of convex $n$-gon and in $m$ given points inside the $n$-gon is the $n$-gon cut? In the second the set of all points $X$ with the following property is found: If you go from $X$ to given point $B$ in a straight line, the distance to another given point $A$ increases.
The first example deals with the following question: In how many nonintersecting triangles whose vertices are in the vertices of convex $n$-gon and in $m$ given points inside the $n$-gon is the $n$-gon cut? In the second the set of all points $X$ with the following property is found: If you go from $X$ to given point $B$ in a straight line, the distance to another given point $A$ increases.
Classification :
00A08, 97D50
@article{RMF_2018_93_4_a6,
author = {Calda, Emil},
title = {Dv\v{e} \'ulohy z planimetrie},
journal = {Rozhledy matematicko-fyzik\'aln{\'\i}},
pages = {35--36},
year = {2018},
volume = {93},
number = {4},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/RMF_2018_93_4_a6/}
}
Calda, Emil. Dvě úlohy z planimetrie. Rozhledy matematicko-fyzikální, Tome 93 (2018) no. 4, pp. 35-36. http://geodesic.mathdoc.fr/item/RMF_2018_93_4_a6/
[1] Bušek, I., Kubínová, M., Novotná, J.: Matematika pro 9. ročník základní školy. Prometheus, Praha, 1994.