Různé přístupy k řešení pravděpodobnostních úloh
Rozhledy matematicko-fyzikální, Tome 93 (2018) no. 1, pp. 15-21
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Although the probability theory is one of the disciplines of elementary mathematics, its teaching is very specific in various aspects. This area of mathematics is often considered difficult, as there is no universal method to be memorized and then used. However, the wide range of possible approaches provides a unique opportunity to encourage and develop mathematical thinking and creativity of problem solvers. The article discusses several different approaches to the solution of a given problem, including the use of stochastic graphs.
Although the probability theory is one of the disciplines of elementary mathematics, its teaching is very specific in various aspects. This area of mathematics is often considered difficult, as there is no universal method to be memorized and then used. However, the wide range of possible approaches provides a unique opportunity to encourage and develop mathematical thinking and creativity of problem solvers. The article discusses several different approaches to the solution of a given problem, including the use of stochastic graphs.
@article{RMF_2018_93_1_a1,
author = {Tlust\'y, Pavel and Krech, Ireneusz},
title = {R\r{u}zn\'e p\v{r}{\'\i}stupy k \v{r}e\v{s}en{\'\i} pravd\v{e}podobnostn{\'\i}ch \'uloh},
journal = {Rozhledy matematicko-fyzik\'aln{\'\i}},
pages = {15--21},
year = {2018},
volume = {93},
number = {1},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/RMF_2018_93_1_a1/}
}
Tlustý, Pavel; Krech, Ireneusz. Různé přístupy k řešení pravděpodobnostních úloh. Rozhledy matematicko-fyzikální, Tome 93 (2018) no. 1, pp. 15-21. http://geodesic.mathdoc.fr/item/RMF_2018_93_1_a1/
[1] Krech, I., Tlustý, P.: Stochastické grafy a jejich aplikace. Jihočeská univerzita, České Budějovice, 2012.
[2] Płocki, A., Tlustý, P.: Pravděpodobnost a statistika pro začátečníky a mírně pokročilé. Prometheus, Praha, 2007.
[3] Sergejev, I. N. a kol.: Zarubežnyje matematičeskije olimpiady. Vypusk 17, Nauka, Moskva, 1987.