An extension of Mahler's theorem to simply connected nilpotent groups
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 4, pp. 265-270

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This Note gives an extension of Mahler's theorem on lattices in $\mathbb{R}^{n}$ to simply connected nilpotent groups with a $Q$-structure. From this one gets an application to groups of Heisenberg type and a generalization of Hermite's inequality.
@article{RLIN_2005_9_16_4_a4,
     author = {Moskowitz, Martin},
     title = {An extension of {Mahler's} theorem to simply connected nilpotent groups},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {265--270},
     publisher = {mathdoc},
     volume = {Ser. 9, 16},
     number = {4},
     year = {2005},
     zbl = {1114.22008},
     mrnumber = {MR2255009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_4_a4/}
}
TY  - JOUR
AU  - Moskowitz, Martin
TI  - An extension of Mahler's theorem to simply connected nilpotent groups
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2005
SP  - 265
EP  - 270
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_4_a4/
LA  - en
ID  - RLIN_2005_9_16_4_a4
ER  - 
%0 Journal Article
%A Moskowitz, Martin
%T An extension of Mahler's theorem to simply connected nilpotent groups
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2005
%P 265-270
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_4_a4/
%G en
%F RLIN_2005_9_16_4_a4
Moskowitz, Martin. An extension of Mahler's theorem to simply connected nilpotent groups. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 4, pp. 265-270. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_4_a4/