An extension of Mahler's theorem to simply connected nilpotent groups
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 4, pp. 265-270
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
This Note gives an extension of Mahler's theorem on lattices in $\mathbb{R}^{n}$ to simply connected nilpotent groups with a $Q$-structure. From this one gets an application to groups of Heisenberg type and a generalization of Hermite's inequality.
@article{RLIN_2005_9_16_4_a4,
author = {Moskowitz, Martin},
title = {An extension of {Mahler's} theorem to simply connected nilpotent groups},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {265--270},
publisher = {mathdoc},
volume = {Ser. 9, 16},
number = {4},
year = {2005},
zbl = {1114.22008},
mrnumber = {MR2255009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_4_a4/}
}
TY - JOUR AU - Moskowitz, Martin TI - An extension of Mahler's theorem to simply connected nilpotent groups JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2005 SP - 265 EP - 270 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_4_a4/ LA - en ID - RLIN_2005_9_16_4_a4 ER -
%0 Journal Article %A Moskowitz, Martin %T An extension of Mahler's theorem to simply connected nilpotent groups %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2005 %P 265-270 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_4_a4/ %G en %F RLIN_2005_9_16_4_a4
Moskowitz, Martin. An extension of Mahler's theorem to simply connected nilpotent groups. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 4, pp. 265-270. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_4_a4/