An extension of Mahler's theorem to simply connected nilpotent groups
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 4, pp. 265-270.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This Note gives an extension of Mahler's theorem on lattices in $\mathbb{R}^{n}$ to simply connected nilpotent groups with a $Q$-structure. From this one gets an application to groups of Heisenberg type and a generalization of Hermite's inequality.
@article{RLIN_2005_9_16_4_a4,
     author = {Moskowitz, Martin},
     title = {An extension of {Mahler's} theorem to simply connected nilpotent groups},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {265--270},
     publisher = {mathdoc},
     volume = {Ser. 9, 16},
     number = {4},
     year = {2005},
     zbl = {1114.22008},
     mrnumber = {466409},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_4_a4/}
}
TY  - JOUR
AU  - Moskowitz, Martin
TI  - An extension of Mahler's theorem to simply connected nilpotent groups
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2005
SP  - 265
EP  - 270
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_4_a4/
LA  - en
ID  - RLIN_2005_9_16_4_a4
ER  - 
%0 Journal Article
%A Moskowitz, Martin
%T An extension of Mahler's theorem to simply connected nilpotent groups
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2005
%P 265-270
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_4_a4/
%G en
%F RLIN_2005_9_16_4_a4
Moskowitz, Martin. An extension of Mahler's theorem to simply connected nilpotent groups. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 4, pp. 265-270. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_4_a4/

[1] L. Auslander, Lecture notes on nil-theta functions. CBMS Reg. Conf. Series Math., 34, Amer. Math. Soc., Providence 1977. | MR | Zbl

[2] P. Barbano, Automorphisms and quasiconformal mappings of Heisenberg type groups. J. of Lie Theory, vol. 8, 1998, 255-277. | fulltext EuDML | MR | Zbl

[3] A. Borel, Introduction aux Groups Arithmetiques. Hermann, Paris 1969. | MR | Zbl

[4] A. Borel - Harish-Chandra, Arithmetic subgroups of algebraic groups. Annals of Math., 75, 1962, 485-535. | MR | Zbl

[5] C. Chabauty, Limites d'ensembles et géométrie des nombres. Bull. Soc. Math. de France, 78, 1950, 143-151. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[6] G. Crandall - J. Dodziuk, Integral Structures on $H$-type Lie Algebras. J. of Lie Theory, 12, 2002, 69-79. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[7] G.P. Hochschild, The Structure of Lie Groups. Holden Day, San Francisco 1965. | MR | Zbl

[8] K. Mahler, On Lattice Points in $n$-dimensional Star Bodies I, Existence theorems. Proc. Roy. Soc. London A, 187, 1946,151-187. | MR | Zbl

[9] A. Malcev, On a class of homogeneous spaces. Amer. Math. Soc. Translation Series, 39, 1951. | MR | Zbl

[10] G. Margulis, Discrete Subgroups of Semisimple Lie Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 17, Springer-Verlag, Berlin-Heidelberg-New York 1990. | MR | Zbl

[11] C. Moore, Decompositions of Unitary Representations defined by Discrete subgroups of Nilpotent Groups. Annals of Math., 82, 1965. | MR | Zbl

[12] R. Mosak - M. Moskowitz, Zariski density in Lie groups. Israel J. Math., 52, 1985, 1-14. | DOI | MR | Zbl

[13] R. Mosak - M. Moskowitz, Stabilizers of lattices in Lie groups. J. of Lie Theory, vol. 4, 1994, 1-16. | fulltext EuDML | MR | Zbl

[14] M. Moskowitz, Some Remarks on Automorphisms of Bounded Displacement and Bounded Cocycles. Monatshefte für Math., 85, 1978, 323-336. | fulltext EuDML | DOI | MR | Zbl

[15] H. Whitney, Elementary structure of real algebraic varieties. Ann. of Math., 66, 1957, 545-556. | MR | Zbl