$L^{2}$-stability of the solutions to a nonlinear binary reaction-diffusion system of P.D.E.s
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 4, pp. 227-238.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The $L^{2}$-stability (instability) of a binary nonlinear reaction diffusion system of P.D.E.s - either under Dirichlet or Neumann boundary data - is considered. Conditions allowing the reduction to a stability (instability) problem for a linear binary system of O.D.E.s are furnished. A peculiar Liapunov functional $V$ linked (together with the time derivative along the solutions) by direct simple relations to the eigenvalues, is used.
@article{RLIN_2005_9_16_4_a1,
     author = {Rionero, Salvatore},
     title = {$L^{2}$-stability of the solutions to a nonlinear binary reaction-diffusion system of {P.D.E.s}},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {227--238},
     publisher = {mathdoc},
     volume = {Ser. 9, 16},
     number = {4},
     year = {2005},
     zbl = {1150.35012},
     mrnumber = {1895041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_4_a1/}
}
TY  - JOUR
AU  - Rionero, Salvatore
TI  - $L^{2}$-stability of the solutions to a nonlinear binary reaction-diffusion system of P.D.E.s
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2005
SP  - 227
EP  - 238
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_4_a1/
LA  - en
ID  - RLIN_2005_9_16_4_a1
ER  - 
%0 Journal Article
%A Rionero, Salvatore
%T $L^{2}$-stability of the solutions to a nonlinear binary reaction-diffusion system of P.D.E.s
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2005
%P 227-238
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_4_a1/
%G en
%F RLIN_2005_9_16_4_a1
Rionero, Salvatore. $L^{2}$-stability of the solutions to a nonlinear binary reaction-diffusion system of P.D.E.s. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 4, pp. 227-238. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_4_a1/

[1] A. Okubo - S.A. Levin, Diffusion and ecological problems: modern prospectives. 2nd ed., Interdisciplinary Applied Mathematics, vol. 14, Springer-Verlag, New York 2001, 488 pp. | MR | Zbl

[2] J.D. Murray, Mathematical Biology. I. An Introduction. 3rd éd., Interdisciplinary Applied Mathematics, vol. 17, Springer-Verlag, New York 2002, 600 pp. | MR | Zbl

[3] J.D. Murray, Mathematical Biology. II. Spatial Models and Biomedical Applications. 3rd ed., Inter-disciplinary Applied Mathematics, vol. 18, Springer-Verlag, New York 2003, 811 pp. | MR | Zbl

[4] B. Straughan, The energy method, stability, and nonlinear convection. 2nd ed., Appl. Math. Sci. Ser. vol. 91, Springer-Verlag, New York-London 2004, 240 pp. | MR | Zbl

[5] R.S. Cantrell - C. Cosner, Spatial Ecology via Reaction-Diffusion Equations. Wiley Series in Mathematical and Computational Biology, Wiley, Chichester 2003, 411 pp. | DOI | MR | Zbl

[6] J.N. Flavin - S. Rionero, Qualitative estimates for partial differential equations: an introduction. CRC Press, Boca Raton, Florida 1996, 360 pp. | MR | Zbl

[7] S. Rionero, A nonlinear $L^{2}$-stability analysis for two-species population dynamics with dispersal. Mathematical Biosciences and Engineering, vol. 3, n. 1, 2006, 189-204. | DOI | MR | Zbl

[8] S. Rionero, A rigorous reduction of the $L^{2}$-stability of the solutions to a nonlinear binary reaction-diffusion system of P.D.E.s, Journal of Mathematical Analysis and Applications, to appear. | MR | Zbl

[9] S. Rionero, Asymptotic properties of solutions to nonlinear possibly degenerated parabolic equations in unbounded domains. Mathematics and Mechanics of Solids, vol. 10, 2005, 541-557. | DOI | MR | Zbl