On a class of inner maps
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 4, pp. 215-226
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Let $f$ be a continuous map of the closure $\overline{\Delta}$ of the open unit disc $\Delta$ of $\mathbb{C}$ into a unital associative Banach algebra $\mathcal{A}$, whose restriction to $\Delta$ is holomorphic, and which satisfies the condition whereby $0 \notin \sigma(f(z)) \subset \overline{\Delta}$ for all $z \in \Delta$ and $\sigma(f(z)) \subset \partial \Delta$ whenever $z \in \partial \Delta$ (where $\sigma(x)$ is the spectrum of any $x \in \mathcal{A}$). One of the basic results of the present paper is that $f$ is , that is to say, $\sigma(f(z))$ is then a compact subset of $\partial \Delta$ that does not depend on $z$ for all $z \in \overline{\Delta}$. This fact will be applied to holomorphic self-maps of the open unit ball of some $J^{*}$-algebra and in particular of any unital $C^{*}$-algebra, investigating some cases in which not only the spectra but the maps themselves are necessarily constant.
@article{RLIN_2005_9_16_4_a0,
author = {Vesentini, Edoardo},
title = {On a class of inner maps},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {215--226},
publisher = {mathdoc},
volume = {Ser. 9, 16},
number = {4},
year = {2005},
zbl = {1215.46030},
mrnumber = {MR2255005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_4_a0/}
}
TY - JOUR AU - Vesentini, Edoardo TI - On a class of inner maps JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2005 SP - 215 EP - 226 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_4_a0/ LA - en ID - RLIN_2005_9_16_4_a0 ER -
Vesentini, Edoardo. On a class of inner maps. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 4, pp. 215-226. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_4_a0/