Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2005_9_16_3_a3, author = {Gianni, Roberto and Petrova, Anna G.}, title = {One-dimensional problem for heat and mass transport in oil-wax solution}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {181--196}, publisher = {mathdoc}, volume = {Ser. 9, 16}, number = {3}, year = {2005}, zbl = {1225.35259}, mrnumber = {2163965}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_3_a3/} }
TY - JOUR AU - Gianni, Roberto AU - Petrova, Anna G. TI - One-dimensional problem for heat and mass transport in oil-wax solution JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2005 SP - 181 EP - 196 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_3_a3/ LA - en ID - RLIN_2005_9_16_3_a3 ER -
%0 Journal Article %A Gianni, Roberto %A Petrova, Anna G. %T One-dimensional problem for heat and mass transport in oil-wax solution %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2005 %P 181-196 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_3_a3/ %G en %F RLIN_2005_9_16_3_a3
Gianni, Roberto; Petrova, Anna G. One-dimensional problem for heat and mass transport in oil-wax solution. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 3, pp. 181-196. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_3_a3/
[1] Heat and mass transport in non-isothermal partially saturated oil-wax solution. In: P. FERGOLA - F. CAPONE - M. GENTILE - G. GUERRIERO (eds.), New Trends In Mathematical Physics: In honour of the Salvatore Rionero 70th Birthday. Proceedings of the International meeting (Naples, Italy, 24-25 January 2003), 34, (11). | MR | Zbl
- ,[2] Mathematical models for waxy crude oils. Meccanica, 39, 2004, 441-482. | Zbl
- - ,[3] Local in time solvability for thermodiffusion Stefan problem. Dinamika sploshnoi sredi, 64, Novosibirsk 1984 (in Russian).
,[4] Classical solution of general two-phase parabolic free boundary problem in one dimension. In: Free boundary problems: theory and applications (Montecatini, 1981), Vol. II. Res. Nothes Math. n. 79, Pitman, London 1983, 644-657. | MR | Zbl
- ,[5] Linear and quasilinear equations of parabolic type. Translations Am. Math. Soc., vol. 23, Providence, RI, 1968. | MR | Zbl
- - ,[6] On a method for reducing boundary problems for systems of differential equations of elliptic type to regular integral equations. Ukrain. Z., 5, 1953, 123-151 (in Russian) MR 17, 494. | MR | Zbl
,