Periodic solutions of nonlinear wave equations with non-monotone forcing terms
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 2, pp. 117-124
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
Existence and regularity of periodic solutions of nonlinear, completely resonant, forced wave equations is proved for a large class of non-monotone forcing terms. Our approach is based on a variational Lyapunov-Schmidt reduction. The corresponding infinite dimensional bifurcation equation exhibits an intrinsic lack of compactness. This difficulty is overcome finding a-priori estimates for the constrained minimizers of the reduced action functional, through techniques inspired by regularity theory as in [10].
@article{RLIN_2005_9_16_2_a3,
author = {Berti, Massimiliano and Biasco, Luca},
title = {Periodic solutions of nonlinear wave equations with non-monotone forcing terms},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {117--124},
year = {2005},
volume = {Ser. 9, 16},
number = {2},
zbl = {1225.35147},
mrnumber = {MR2225505},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a3/}
}
TY - JOUR AU - Berti, Massimiliano AU - Biasco, Luca TI - Periodic solutions of nonlinear wave equations with non-monotone forcing terms JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2005 SP - 117 EP - 124 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a3/ LA - en ID - RLIN_2005_9_16_2_a3 ER -
%0 Journal Article %A Berti, Massimiliano %A Biasco, Luca %T Periodic solutions of nonlinear wave equations with non-monotone forcing terms %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2005 %P 117-124 %V 16 %N 2 %U http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a3/ %G en %F RLIN_2005_9_16_2_a3
Berti, Massimiliano; Biasco, Luca. Periodic solutions of nonlinear wave equations with non-monotone forcing terms. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 2, pp. 117-124. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a3/