Quasi-periodic oscillations for wave equations under periodic forcing
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 2, pp. 109-116.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Existence of quasi-periodic solutions with two frequencies of completely resonant, periodically forced, nonlinear wave equations with periodic spatial boundary conditions is established. We consider both the cases the forcing frequency is (Case A) a rational number and (Case B) an irrational number.
Si dimostra l'esistenza di soluzioni quasi periodiche con due frequenze per una classe di equazioni delle onde non lineari completamente risonanti aventi un termine forzante periodico. Consideriamo che la frequenza forzante sia un numero razionale (Caso A), sia irrazionale (Caso B).
@article{RLIN_2005_9_16_2_a2,
     author = {Berti, Massimiliano and Procesi, Michela},
     title = {Quasi-periodic oscillations for wave equations under periodic forcing},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {109--116},
     publisher = {mathdoc},
     volume = {Ser. 9, 16},
     number = {2},
     year = {2005},
     zbl = {1225.35146},
     mrnumber = {1614571},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a2/}
}
TY  - JOUR
AU  - Berti, Massimiliano
AU  - Procesi, Michela
TI  - Quasi-periodic oscillations for wave equations under periodic forcing
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2005
SP  - 109
EP  - 116
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a2/
LA  - en
ID  - RLIN_2005_9_16_2_a2
ER  - 
%0 Journal Article
%A Berti, Massimiliano
%A Procesi, Michela
%T Quasi-periodic oscillations for wave equations under periodic forcing
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2005
%P 109-116
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a2/
%G en
%F RLIN_2005_9_16_2_a2
Berti, Massimiliano; Procesi, Michela. Quasi-periodic oscillations for wave equations under periodic forcing. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 2, pp. 109-116. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a2/

[1] A. Ambrosetti - M. Badiale, Homoclinics: Poincaré-Melnikov type results via a variational method. Annales I.H.P. - Analyse nonlin., v. 15, n. 2, 1998, 233-252. | fulltext EuDML | fulltext mini-dml | DOI | MR | Zbl

[2] D. Bambusi - M. Berti, A Birkhoof-Lewis type theorem for some Hamiltonian PDE's. SIAM Journal on Mathematical Analysis, to appear. | fulltext mini-dml | DOI | MR | Zbl

[3] V. Benci - P. Rabinowitz, Critical point theorems for indefinite functionals. Invent. Math., 52, n. 3, 1979, 241-273. | fulltext EuDML | DOI | MR | Zbl

[4] M. Berti - L. Biasco, Periodic solutions of nonlinear wave equations with non-monotone forcing terms. Rend. Mat. Acc. Lincei, s. 9, v. 16, 2005, 117-124. | fulltext bdim | MR | Zbl

[5] M. Berti - P. Bolle, Periodic solutions of nonlinear wave equations with general nonlinearities. Comm. Math. Phys., 243, n. 2, 2003, 315-328. | fulltext mini-dml | DOI | MR | Zbl

[6] M. Berti - P. Bolle, Cantor families of periodic solutions for completely resonant non linear wave equations. Preprint SISSA 2004. | fulltext mini-dml | fulltext mini-dml | Zbl

[7] M. Berti - M. Procesi, Quasi-periodic solutions of completely resonant forced wave equations. Preprint SISSA. | fulltext mini-dml | DOI | MR | Zbl

[8] P.I. Plotinikov - L.N. Yungermann, Periodic solutions of a weakly nonlinear wave equation with an irrational relation of period to interval length. Transl. in Diff. Eq., 24, n. 9, 1988, 1059-1065. | MR

[9] M. Procesi, Quasi-periodic solutions for completely resonant wave equations in 1D and 2D. Discr. Cont. Dyn. Syst., 13(3), August 2005, 541-552. | DOI | MR | Zbl

[10] P. Rabinowitz, Periodic solutions of nonlinear hyperbolic partial differential equations. Comm. Pure Appl. Math., 20, 1967, 145-205. | MR | Zbl