On the geometry of moduli of curves and line bundles
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 1, pp. 45-59.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Here we focus on the geometry of $\overline{P}_{d,g}$, the compactification of the universal Picard variety constructed by L. Caporaso. In particular, we show that the moduli space of spin curves constructed by M. Cornalba naturally injects into $\overline{P}_{d,g}$ and we give generators and relations of the rational Picard group of $\overline{P}_{d,g}$, extending previous work by A. Kouvidakis.
Il presente lavoro è dedicato alla geometria di $\overline{P}_{d,g}$, la compattificazione della varietà di Picard universale costruita da L. Caporaso. In particolare, si dimostra che lo spazio dei moduli delle curve spin costruito da M. Cornalba si mappa iniettivamente in $\overline{P}_{d,g}$ e si esibiscono generatori e relazioni del gruppo di Picard razionale di $\overline{P}_{d,g}$, estendendo un precedente risultato di A. Kouvidakis.
@article{RLIN_2005_9_16_1_a3,
     author = {Fontanari, Claudio},
     title = {On the geometry of moduli of curves and line bundles},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {45--59},
     publisher = {mathdoc},
     volume = {Ser. 9, 16},
     number = {1},
     year = {2005},
     zbl = {1222.14055},
     mrnumber = {895568},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a3/}
}
TY  - JOUR
AU  - Fontanari, Claudio
TI  - On the geometry of moduli of curves and line bundles
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2005
SP  - 45
EP  - 59
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a3/
LA  - en
ID  - RLIN_2005_9_16_1_a3
ER  - 
%0 Journal Article
%A Fontanari, Claudio
%T On the geometry of moduli of curves and line bundles
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2005
%P 45-59
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a3/
%G en
%F RLIN_2005_9_16_1_a3
Fontanari, Claudio. On the geometry of moduli of curves and line bundles. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 1, pp. 45-59. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a3/

[1] E. Arbarello - M. Cornalba, The Picard groups of the moduli spaces of curves. Topology, 26, 1987, 153-171. | DOI | MR | Zbl

[2] E. Arbarello - M. Cornalba - P. Griffiths - J. Harris, Geometry of Algebraic Curves, I. Grundlehren Math. Wiss., 267, Springer-Verlag, New York 1985. | MR | Zbl

[3] G. Bini - C. Fontanari, Moduli of Curves and Spin Structures via Algebraic Geometry. Trans. Amer. Math. Soc., to appear. | fulltext mini-dml | DOI | MR | Zbl

[4] L. Caporaso, A compactification of the universal Picard variety over the moduli space of stable curves. J. Amer. Math. Soc., 7, 1994, 589-660. | DOI | MR | Zbl

[5] L. Caporaso, On modular properties of odd theta characteristics. In: E. PREVIATO (ed.), Advances in algebraic geometry motivated by physics (Lowell, MA, 2000). Contemp. Math., 276, Amer. Math. Soc., Providence, RI, 2001, 101-114. | fulltext mini-dml | DOI | MR | Zbl

[6] L. Caporaso - C. Casagrande - M. Cornalba, Moduli of roots of line bundles on curves. Preprint math.AG/0404078, 2004. | fulltext mini-dml | DOI | MR | Zbl

[7] L. Caporaso - E. Sernesi, Recovering plane curves from their bitangents. J. Algebraic Geom., 12, 2003, 225-244. | fulltext mini-dml | DOI | MR | Zbl

[8] L. Caporaso - E. Sernesi, Characterizing curves by their odd theta-characteristics. J. Reine Angew. Math., 562, 2003, 101-135. | fulltext mini-dml | DOI | MR | Zbl

[9] M. Cornalba, Moduli of curves and theta-characteristics. In: M. CORNALBA - X. GOMEZ-MONT - A. VERJOVSKY (eds.), Lectures on Riemann surfaces (Trieste 1987). World Sci. Publishing, Singapore 1989, 560-589. | MR | Zbl

[10] M. Cornalba, A remark on the Picard group of spin moduli space. Rend. Mat. Acc. Lincei, s. 9, v. 2, 1991, 211-217. | fulltext bdim | fulltext EuDML | fulltext mini-dml | MR | Zbl

[11] J. Harer, The rational Picard group of the moduli space of Riemann surfaces with spin structure. In: C.-F. BÖDIGHEIMER - R.M. HAIN (eds.), Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991). Contemp. Math., 150, Amer. Math. Soc., Providence, RI, 1993, 107-136. | DOI | MR | Zbl

[12] J. Harris - I. Morrison, Moduli of curves. Graduate Texts in Math., 187, Springer, New York-London 1998, 336 pp. | MR | Zbl

[13] R. Hartshorne, Algebraic Geometry. Graduate Texts in Math., 52, Springer, New York 1977, 496 pp. | MR | Zbl

[14] T.J. Jarvis, Torsion-free sheaves and moduli of generalized spin curves. Compositio Math., 110, 1998, 291-333. | fulltext mini-dml | DOI | MR | Zbl

[15] T.J. Jarvis, Geometry of the moduli of higher spin curves. Internat. J. Math., 11, 2000, 637-663. | fulltext mini-dml | DOI | MR | Zbl

[16] T.J. Jarvis, The Picard group of the moduli of higher spin curves. New York J. Math., 7, 2001, 23-47. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[17] A. Kouvidakis, The Picard group of the universal Picard varieties over the moduli space of curves. J. Diff. Geom., 34, 1991, 839-850. | fulltext mini-dml | MR | Zbl

[18] R. Pandharipande, A compactification over $\overline M_{g}$ of the universal moduli space of slope-semistable vector bundles. J. Amer. Math. Soc., 9, 1996, 425-471. | fulltext mini-dml | DOI | MR | Zbl