Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2005_9_16_1_a3, author = {Fontanari, Claudio}, title = {On the geometry of moduli of curves and line bundles}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {45--59}, publisher = {mathdoc}, volume = {Ser. 9, 16}, number = {1}, year = {2005}, zbl = {1222.14055}, mrnumber = {895568}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a3/} }
TY - JOUR AU - Fontanari, Claudio TI - On the geometry of moduli of curves and line bundles JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2005 SP - 45 EP - 59 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a3/ LA - en ID - RLIN_2005_9_16_1_a3 ER -
%0 Journal Article %A Fontanari, Claudio %T On the geometry of moduli of curves and line bundles %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2005 %P 45-59 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a3/ %G en %F RLIN_2005_9_16_1_a3
Fontanari, Claudio. On the geometry of moduli of curves and line bundles. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 1, pp. 45-59. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a3/
[1] The Picard groups of the moduli spaces of curves. Topology, 26, 1987, 153-171. | DOI | MR | Zbl
- ,[2] Geometry of Algebraic Curves, I. Grundlehren Math. Wiss., 267, Springer-Verlag, New York 1985. | MR | Zbl
- - - ,[3] Moduli of Curves and Spin Structures via Algebraic Geometry. Trans. Amer. Math. Soc., to appear. | fulltext mini-dml | DOI | MR | Zbl
- ,[4] A compactification of the universal Picard variety over the moduli space of stable curves. J. Amer. Math. Soc., 7, 1994, 589-660. | DOI | MR | Zbl
,[5] On modular properties of odd theta characteristics. In: E. PREVIATO (ed.), Advances in algebraic geometry motivated by physics (Lowell, MA, 2000). Contemp. Math., 276, Amer. Math. Soc., Providence, RI, 2001, 101-114. | fulltext mini-dml | DOI | MR | Zbl
,[6] Moduli of roots of line bundles on curves. Preprint math.AG/0404078, 2004. | fulltext mini-dml | DOI | MR | Zbl
- - ,[7] Recovering plane curves from their bitangents. J. Algebraic Geom., 12, 2003, 225-244. | fulltext mini-dml | DOI | MR | Zbl
- ,[8] Characterizing curves by their odd theta-characteristics. J. Reine Angew. Math., 562, 2003, 101-135. | fulltext mini-dml | DOI | MR | Zbl
- ,[9] Moduli of curves and theta-characteristics. In: M. CORNALBA - X. GOMEZ-MONT - A. VERJOVSKY (eds.), Lectures on Riemann surfaces (Trieste 1987). World Sci. Publishing, Singapore 1989, 560-589. | MR | Zbl
,[10] A remark on the Picard group of spin moduli space. Rend. Mat. Acc. Lincei, s. 9, v. 2, 1991, 211-217. | fulltext bdim | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[11] The rational Picard group of the moduli space of Riemann surfaces with spin structure. In: C.-F. BÖDIGHEIMER - R.M. HAIN (eds.), Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991). Contemp. Math., 150, Amer. Math. Soc., Providence, RI, 1993, 107-136. | DOI | MR | Zbl
,[12] Moduli of curves. Graduate Texts in Math., 187, Springer, New York-London 1998, 336 pp. | MR | Zbl
- ,[13] Algebraic Geometry. Graduate Texts in Math., 52, Springer, New York 1977, 496 pp. | MR | Zbl
,[14] Torsion-free sheaves and moduli of generalized spin curves. Compositio Math., 110, 1998, 291-333. | fulltext mini-dml | DOI | MR | Zbl
,[15] Geometry of the moduli of higher spin curves. Internat. J. Math., 11, 2000, 637-663. | fulltext mini-dml | DOI | MR | Zbl
,[16] The Picard group of the moduli of higher spin curves. New York J. Math., 7, 2001, 23-47. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[17] The Picard group of the universal Picard varieties over the moduli space of curves. J. Diff. Geom., 34, 1991, 839-850. | fulltext mini-dml | MR | Zbl
,[18] A compactification over $\overline M_{g}$ of the universal moduli space of slope-semistable vector bundles. J. Amer. Math. Soc., 9, 1996, 425-471. | fulltext mini-dml | DOI | MR | Zbl
,