On integral representations of $q$-gamma and $q$-beta functions
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 1, pp. 11-29

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We study $q$-integral representations of the $q$-gamma and the $q$-beta functions. As an application of these integral representations, we obtain a simple conceptual proof of a family of identities for Jacobi triple product, including Jacobi's identity, and of Ramanujan's formula for the bilateral hypergeometric series.
@article{RLIN_2005_9_16_1_a1,
     author = {De Sole, Alberto and Kac, Victor G.},
     title = {On integral representations of $q$-gamma and $q$-beta functions},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {11--29},
     publisher = {mathdoc},
     volume = {Ser. 9, 16},
     number = {1},
     year = {2005},
     zbl = {1225.33017},
     mrnumber = {MR2225920},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a1/}
}
TY  - JOUR
AU  - De Sole, Alberto
AU  - Kac, Victor G.
TI  - On integral representations of $q$-gamma and $q$-beta functions
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2005
SP  - 11
EP  - 29
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a1/
LA  - en
ID  - RLIN_2005_9_16_1_a1
ER  - 
%0 Journal Article
%A De Sole, Alberto
%A Kac, Victor G.
%T On integral representations of $q$-gamma and $q$-beta functions
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2005
%P 11-29
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a1/
%G en
%F RLIN_2005_9_16_1_a1
De Sole, Alberto; Kac, Victor G. On integral representations of $q$-gamma and $q$-beta functions. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 1, pp. 11-29. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a1/