Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2004_9_15_3-4_a9, author = {Kamin, Shoshana and Rosenau, Philip}, title = {Convergence to the travelling wave solution for a nonlinear reaction-diffusion equation}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {271--280}, publisher = {mathdoc}, volume = {Ser. 9, 15}, number = {3-4}, year = {2004}, zbl = {1113.35094}, mrnumber = {588018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a9/} }
TY - JOUR AU - Kamin, Shoshana AU - Rosenau, Philip TI - Convergence to the travelling wave solution for a nonlinear reaction-diffusion equation JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2004 SP - 271 EP - 280 VL - 15 IS - 3-4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a9/ LA - en ID - RLIN_2004_9_15_3-4_a9 ER -
%0 Journal Article %A Kamin, Shoshana %A Rosenau, Philip %T Convergence to the travelling wave solution for a nonlinear reaction-diffusion equation %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2004 %P 271-280 %V 15 %N 3-4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a9/ %G en %F RLIN_2004_9_15_3-4_a9
Kamin, Shoshana; Rosenau, Philip. Convergence to the travelling wave solution for a nonlinear reaction-diffusion equation. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 271-280. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a9/
[1] Density-dependent interaction-diffusion systems. In: W.E. STEWART et al. (eds.), Dynamics and Modeling of Reactive Systems. Academic Press, New York 1980, 161-176. | MR
,[2] Positivity versus localization in degenerate diffusion equation. Nonlinear Anal., 9, 1985, 987-1008. | DOI | MR | Zbl
- - ,[3] Stability of travelling waves for degenerate reaction-diffusion equations of KPP-type. Adv. Nonlin. St., 2, 2002, 357-371. | MR | Zbl
,[4] Existence and uniqueness of singular solutions of fast diffusion porous medium equation. Preprint.
- - ,[5] Continuity of weak solutions to a general porous media equation. Ind. Univ. Math. J., 32, 1983, 83-118. | DOI | MR | Zbl
,[6] $L^{1}$ stability of shock waves in scalar viscous conservation laws. Commun. Pure Appl. Math., 51, 1998, 291-301. | DOI | MR | Zbl
- ,[7] Travelling waves in nonlinear diffusion-advection-reaction. Memorandum no. 1585, June 2001, version available at www.math.utwente.nl/publications/2001/1585.pdf. | Zbl
- ,[8] Some problems of the qualitative theory of non-linear degenerate second-order parabolic equations. Russian Math. Surv., 42, 1987, 169-222. | MR | Zbl
,[9] Emergence of waves in a nonlinear convection-reaction-diffusion equation. Advanced Nonlinear Studies, 4(3), 2004, 251. | MR | Zbl
- ,[10] Some properties of generalized solutions of quasilinear degenerate parabolic equations. Acta Math. Acad. Sc. Hungaricae, 32, 1978, 301-330. | DOI | MR | Zbl
,[11] Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application a un problème biologique. Bulletin Univ. Moscou, Ser. Internationale, Math., Mec., 1, 1937, 1-25 (see English translation in: P. PELCÉ (ed.), Dynamics of Curved Fronts. Academic Press, Boston 1988, 105-130; and in: O.A. OLEINIK (ed.), Selected Works Part II. Differential Equations and Probability Theory. Gordon and Breach Publishers, 1996, 106-132). | Zbl
- - ,[12] Sharp profiles in degenerate and doubly degenerate Fisher-KPP equations. Preprint. | DOI | MR | Zbl
- ,[13] Some exact solutions to a nonlinear diffusion problem in population genetics and combustion. J. Theor. Biol., 85, 1980, 325-334. | DOI | MR
,[14] The Cauchy problem and boundary problems for equations of the type of nonstationary filtration (in Russian). Izv. Akad. Nauk. SSSR Ser. Mat., 22, 1958, 667-704. | MR | Zbl
- - ,[15] $L^{1}$ stability of travelling waves with applications to convective porous media flow. Commun. Pure Appl. Math., 35, 1982, 737-749. | DOI | MR | Zbl
- ,[16] Singular solutions of doubly singular parabolic equations with absorption. Elect. J. Diff. Eq., 67, 2000, 1-22. | fulltext EuDML | MR | Zbl
- ,[17] Reaction and concentration dependent diffusion model. Phys. Rev. Lett., 88, 2002, 194501-4.
,[18] Travelling wave phenomena in some degenerate reaction-diffusion equations. J. Diff. Eq., 117, 1995, 281-319. | DOI | MR | Zbl
- ,[19] Stabilité des ondes de choc de viscosité qui peuvent etre characteristiques. In: D. CIORANESCU - J.-L. LIONS (eds.), Nonlinear Partial Differential Equations and Their Applications. Studies in Mathematics and its Applications, 31, Elsevier, 2002, 647-654. | Zbl
,[20] The behaviour of solutions of some nonlinear diffusion equations for large time. J. Math. Kyoto Univ., 18, 1978, 453-508. | fulltext mini-dml | MR | Zbl
,[21] An introduction to the mathematical theory of the porous medium equation. In: Shape Optimization and Free Boundaries. NATO ASI series, series C, Mathematical and physical sciences, v. 380, Kluwer Acad. Publ., Dordrecht 1992, 347-389. | MR | Zbl
,[22] A note on the asymptotic behaviour for $u_{t} = \triangle u^{m} - u^{m}$. Preprint.
,[23] On propagation of waves described by nonlinear parabolic equations. In: O.A. OLEINIK (ed.), I.G. Petrowsky Selected Works, Part II. Differential Equations and Probability Theory. Gordon and Breach Publishers, 1996.
,[24] Travelling wave solutions of parabolic systems. American Mathematical Society, Providence, Rhode Island 1994, Translation of Mathematical Monographs, vol. 140 (translated by James F. Heyda from an original Russian manuscript). | MR | Zbl
- - ,