Some remarks on multidimensional systems of conservation laws
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 225-233.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This note is concerned with the Cauchy problem for hyperbolic systems of conservation laws in several space dimensions. We first discuss an example of ill-posedness, for a special system having a radial symmetry property. Some conjectures are formulated, on the compactness of the set of flow maps generated by vector fields with bounded variation.
@article{RLIN_2004_9_15_3-4_a5,
     author = {Bressan, Alberto},
     title = {Some remarks on multidimensional systems of conservation laws},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {225--233},
     publisher = {mathdoc},
     volume = {Ser. 9, 15},
     number = {3-4},
     year = {2004},
     zbl = {1162.35412},
     mrnumber = {2096794},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a5/}
}
TY  - JOUR
AU  - Bressan, Alberto
TI  - Some remarks on multidimensional systems of conservation laws
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2004
SP  - 225
EP  - 233
VL  - 15
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a5/
LA  - en
ID  - RLIN_2004_9_15_3-4_a5
ER  - 
%0 Journal Article
%A Bressan, Alberto
%T Some remarks on multidimensional systems of conservation laws
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2004
%P 225-233
%V 15
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a5/
%G en
%F RLIN_2004_9_15_3-4_a5
Bressan, Alberto. Some remarks on multidimensional systems of conservation laws. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 225-233. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a5/

[1] L. Ambrosio, Transport equation and the Cauchy problem for $BV$ vector fields. Preprint 2003. | DOI | MR | Zbl

[2] P. Brenner, The Cauchy problem for the symmetric hyperbolic systems in $L_{p}$. Math. Scand., 19, 1966, 27-37. | fulltext EuDML | MR | Zbl

[3] A. Bressan, Hyperbolic systems of conservation laws. The one dimensional Cauchy problem. Oxford University Press, 2000. | Zbl

[4] A. Bressan, An ill posed Cauchy problem for a hyperbolic system in two space dimensions. Rend. Sem. Mat. Univ. Padova, 110, 2003, 103-117. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[5] A. Bressan, A lemma and a conjecture on the cost of rearrangements. Rend. Sem. Mat. Univ. Padova, 110, 2003, 97-102. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[6] A. Bressan - T.P. Liu - T. Yang, $L^{1}$ stability estimates for $n \times n$ conservation laws. Arch. Rational Mech. Anal., 149, 1999, 1-22. | DOI | MR | Zbl

[7] C. Dafermos, Hyperbolic conservation laws in continuum physics. Springer-Verlag, Berlin 1999. | Zbl

[8] R. Diperna - P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 98, 1989, 511-517. | fulltext EuDML | DOI | MR | Zbl

[9] L. Gärding, Problèmes de Cauchy pour les systèmes quasi-linéaires d’ordre un strictement hyperboliques. In: Les E.D.P’s, vol. 117, Paris 1963, Colloques Internationaux du CNRS, 33-40. | MR | Zbl

[10] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math., 18, 1965, 697-715. | MR | Zbl

[11] S. Kruzhkov, First-order quasilinear equations with several space variables. Math. USSR Sbornik, 10, 1970, 217-273. | Zbl

[12] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables. Springer-Verlag, New York 1984. | DOI | MR | Zbl

[13] E.Y. Panov, On the theory of generalized entropy solutions of the Cauchy problem for a class of non-strictly hyperbolic systems of conservation laws. Sbornik: Mathematics, 191, 2000, 121-150. | DOI | MR | Zbl

[14] J. Rauch, $BV$ estimates fail for most quasilinear hyperbolic systems in dimensions greater than one. Comm. Math. Phys., 106, 1986, 481-484. | fulltext mini-dml | MR | Zbl

[15] D. Serre, Solutions classiques globales des équations d’Euler pour un fluide parfait compressible. Ann. Inst. Fourier, 47, 1997, 139-153. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[16] D. Serre, Systems of Conservation Laws I. Cambridge University Press, 2000. | MR | Zbl

[17] J. Smoller, Shock Waves and Reaction-Diffusion Equations. Springer-Verlag, New York 1983. | MR | Zbl

[18] Y. Zheng, Systems of conservation laws: two-dimensional Riemann problems. Birkhäuser, 2001. | DOI | MR | Zbl

[19] W.P. Ziemer, Weakly Differentiable Functions. Springer-Verlag, New York 1989. | DOI | MR | Zbl