Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2004_9_15_3-4_a3, author = {Ni, Wei-Ming}, title = {Diffusion and cross-diffusion in pattern formation}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {197--214}, publisher = {mathdoc}, volume = {Ser. 9, 15}, number = {3-4}, year = {2004}, zbl = {1162.35370}, mrnumber = {1014726}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a3/} }
TY - JOUR AU - Ni, Wei-Ming TI - Diffusion and cross-diffusion in pattern formation JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2004 SP - 197 EP - 214 VL - 15 IS - 3-4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a3/ LA - en ID - RLIN_2004_9_15_3-4_a3 ER -
%0 Journal Article %A Ni, Wei-Ming %T Diffusion and cross-diffusion in pattern formation %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2004 %P 197-214 %V 15 %N 3-4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a3/ %G en %F RLIN_2004_9_15_3-4_a3
Ni, Wei-Ming. Diffusion and cross-diffusion in pattern formation. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 197-214. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a3/
[1] Dynamic theory of quasilinear parabolic equations II. Reaction-diffusion systems. Diff. Integral Eqns., 3, 1990, 13-75. | MR | Zbl
,[2] Nonhomogeneous linear quasilinear elliptic and parabolic boundary value problems. In: H. SCHMEISSER - H. TRIEBEL (eds.), Function Spaces, Differential Operators and Nonlinear Analysis. Teubner-Texte zur Math., 133, Stuttgart-Leipzig 1993, 9-126. | MR | Zbl
,[3] Supersolution, monotone iteration and stability. J. Diff. Eqns., 21, 1976, 365-377. | MR | Zbl
,[4] Spatial ecology via reaction-diffusion equations. John Wiley and Sons, 2003. | DOI | MR | Zbl
- ,[5] Instability results for a reaction-diffusion equation with Neumann boundary conditions. J. Diff. Eqns., 27, 1978, 266-273. | DOI | MR | Zbl
- ,[6] Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion. Discrete and Continuous Dynamical Systems, 10, 2004, 719-730. | DOI | MR | Zbl
- - ,[7] A theory of biological pattern formation. Kybernetik, 12, 1972, 30-39.
- ,[8] Shadow systems and attractors in reaction-diffusion equations. Appl. Anal., 32, 1989, 287-303. | DOI | MR | Zbl
- ,[9] A nonlinear parabolic equation with varying domain. Arch. Rat. Mech. Anal., 86, 1984, 99-123. | DOI | MR | Zbl
- ,[10] An introduction to population ecology. Yale University Press, New Haven, CT 1978. | MR | Zbl
,[11] Remarks on the behavior of certain eigenvalues on a singularly perturbed domain with several thin channels. Comm. PDE, 17, 1992, 523-552. | DOI | MR | Zbl
- ,[12] Cross diffusion systems on $n$ spatial dimensional domains. Indiana Univ. Math. J., 51, 2002, 625-643. | DOI | MR | Zbl
,[13] Stability of solutions of semilinear diffusion equations. Preprint, 1986.
- ,[14] Diffusion, self-diffusion and cross-diffusion. J. Diff. Eqns., 131, 1996, 79-131. | DOI | MR | Zbl
- ,[15] Diffusion vs cross diffusion: An elliptic approach. J. Diff. Eqns., 154, 1999, 157-190. | DOI | MR | Zbl
- ,[16] On the global existence of a cross-diffusion system. Discrete and Continuous Dynamical Systems, 4, 1998, 193-203. | DOI | MR | Zbl
- - ,[17] On a limiting system in the Lotka-Volterra competition with cross-diffusion. Discrete and Continuous Dynamical Systems, 10, 2004, 435-458. | DOI | MR | Zbl
- - ,[18] Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. RIMS, 15, 1979, 401-454. | fulltext mini-dml | DOI | MR | Zbl
,[19] Some aspects of semilinear ellitpic equations. Lecture Notes, National Tsinghua Univ., Hsinchu-Taiwan-China 1987. | Zbl
,[20] Diffusion, cross-diffusion, and their spike-layer steady states. Notices of Amer. Math. Soc., 45, 1998, 9-18. | MR | Zbl
,[21] Montonicity of stable solutions in shadow systems. Trans. Amer. Math. Soc., 353, 2001, 5057-5069. | DOI | MR | Zbl
- - ,[22] On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type. Trans. Amer. Math. Soc., 297, 1986, 351-368. | DOI | MR | Zbl
- ,[23] On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math., 44, 1991, 819-851. | DOI | MR | Zbl
- ,[24] Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J., 70, 1993, 247-281. | fulltext mini-dml | DOI | MR | Zbl
- ,[25] Point condensation generated by a reaction-diffusion system in axially symmetric domains. Japan J. Industrial Appl. Math., 12, 1995, 327-365. | DOI | MR | Zbl
- ,[26] Stability analysis of point-condensation solutions to a reaction-diffusion system. Tokoku Math. J., submitted.
- - ,[27] Stability of least-energy patterns in a shadow system of an activator-inhibitor model. Japan J. Industrial Appl. Math., 18, 2001, 259-272. | DOI | MR | Zbl
- - ,[28] Global existence of solutions for a strongly coupled quasilinear parabolic system. Nonlinear Analysis, 14, 1990, 657-689. | DOI | MR | Zbl
- ,[29] Invariant rectangles and strongly coupled semilinear paraboli systems. Forum Math., 2, 1990, 175-202. | fulltext EuDML | DOI | MR | Zbl
- ,[30] Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J., 21, 1972, 979-1000. | MR | Zbl
,[31] Spatial segregation of interacting species. J. Theo. Biology, 79, 1979, 83-99. | DOI | MR
- - ,[32] Uniform boundedness and convergence of solutions to cross-diffusion systems. J. Diff. Eqns., 185, 2002, 281-305. | DOI | MR | Zbl
,[33] A sign-changing global minimizer on a convex domain. In: C. BANDLE - J. BEMELMANS - M. CHIPOT - M. GRÜTER - J. ST. JEAN PAULIN (eds.), Progress in Partial Differential Equations: Elliptic and Parabolic Problems. Pitman Research Notes in Math., 266, Longman, Harlow 1992, 251-258. | MR | Zbl
,[34] Point-condensation for a reaction-diffusion system. J. Diff. Eqns., 61, 1986, 208-249. | DOI | MR | Zbl
,[35] Mémoires pour servir à l’histoire d’un genre de polypes d’eau douce, à bras en forme de cornes. Leyden 1744.
,[36] The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. London, B, 237, 1952, 37-72.
,[37] Competition models in population biology. CBMS-NSF Conf. Ser. Appl. Math., 45, SIAM, Philadelphia 1983. | DOI | MR | Zbl
,[38] Global solution to some quasilinear parabolic system in population dynamics. Nonlinear Analysis, 21, 1993, 531-556. | DOI | MR | Zbl
,