Existence and approximation results for gradient flows
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 183-196
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
This note addresses the Cauchy problem for the gradient flow equation in a Hilbert space $H$
$$
\begin{cases}
u^{\prime}(t) + \partial \phi(u(t)) \ni 0 \quad \text{a.e. in} \, (0,T),\\
u(0) = u_{0},
\end{cases}
$$
where $\phi : H \rightarrow (-\infty , +\infty \,]$ is a proper, lower semicontinuous functional which is not supposed to be a (smooth perturbation of a) convex functional and $\partial \phi$ is (a suitable limiting version of) its subdifferential. The interest for this kind of equations is motivated by a number of examples, which show that several mathematical models describing phase transitions phenomena and leading to systems of evolutionary PDEs have a \textit{common gradient flow structure}. In particular, when quasi-stationary models are considered, highly non-convex functionals naturally arise. We will present some existence results for the solution of the gradient flow equation by exploiting a variational \textit{approximation} technique, featuring some ideas from the theory of \textit{Minimizing Movements}.
@article{RLIN_2004_9_15_3-4_a2,
author = {Rossi, Riccarda and Savar\'e, Giuseppe},
title = {Existence and approximation results for gradient flows},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {183--196},
year = {2004},
volume = {Ser. 9, 15},
number = {3-4},
zbl = {1162.34343},
mrnumber = {MR2148878},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a2/}
}
TY - JOUR AU - Rossi, Riccarda AU - Savaré, Giuseppe TI - Existence and approximation results for gradient flows JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2004 SP - 183 EP - 196 VL - 15 IS - 3-4 UR - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a2/ LA - en ID - RLIN_2004_9_15_3-4_a2 ER -
%0 Journal Article %A Rossi, Riccarda %A Savaré, Giuseppe %T Existence and approximation results for gradient flows %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2004 %P 183-196 %V 15 %N 3-4 %U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a2/ %G en %F RLIN_2004_9_15_3-4_a2
Rossi, Riccarda; Savaré, Giuseppe. Existence and approximation results for gradient flows. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 183-196. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a2/