Existence and approximation results for gradient flows
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 183-196

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This note addresses the Cauchy problem for the gradient flow equation in a Hilbert space $H$ $$ \begin{cases} u^{\prime}(t) + \partial \phi(u(t)) \ni 0 \quad \text{a.e. in} \, (0,T),\\ u(0) = u_{0}, \end{cases} $$ where $\phi : H \rightarrow (-\infty , +\infty \,]$ is a proper, lower semicontinuous functional which is not supposed to be a (smooth perturbation of a) convex functional and $\partial \phi$ is (a suitable limiting version of) its subdifferential. The interest for this kind of equations is motivated by a number of examples, which show that several mathematical models describing phase transitions phenomena and leading to systems of evolutionary PDEs have a \textit{common gradient flow structure}. In particular, when quasi-stationary models are considered, highly non-convex functionals naturally arise. We will present some existence results for the solution of the gradient flow equation by exploiting a variational \textit{approximation} technique, featuring some ideas from the theory of \textit{Minimizing Movements}.
@article{RLIN_2004_9_15_3-4_a2,
     author = {Rossi, Riccarda and Savar\'e, Giuseppe},
     title = {Existence and approximation results for gradient flows},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {183--196},
     publisher = {mathdoc},
     volume = {Ser. 9, 15},
     number = {3-4},
     year = {2004},
     zbl = {1162.34343},
     mrnumber = {MR2148878},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a2/}
}
TY  - JOUR
AU  - Rossi, Riccarda
AU  - Savaré, Giuseppe
TI  - Existence and approximation results for gradient flows
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2004
SP  - 183
EP  - 196
VL  - 15
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a2/
LA  - en
ID  - RLIN_2004_9_15_3-4_a2
ER  - 
%0 Journal Article
%A Rossi, Riccarda
%A Savaré, Giuseppe
%T Existence and approximation results for gradient flows
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2004
%P 183-196
%V 15
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a2/
%G en
%F RLIN_2004_9_15_3-4_a2
Rossi, Riccarda; Savaré, Giuseppe. Existence and approximation results for gradient flows. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 183-196. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a2/