Free boundary regularity in Stefan type problems
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 345-355.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Regularity results of free boundaries for Stefan type problems are discussed. The influence that curvature may have on the behavior of the free boundary is studied and various open problems are also mentioned.
@article{RLIN_2004_9_15_3-4_a14,
     author = {Athanasopoulos, Ioannis},
     title = {Free boundary regularity in {Stefan} type problems},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {345--355},
     publisher = {mathdoc},
     volume = {Ser. 9, 15},
     number = {3-4},
     year = {2004},
     zbl = {1105.35146},
     mrnumber = {732100},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a14/}
}
TY  - JOUR
AU  - Athanasopoulos, Ioannis
TI  - Free boundary regularity in Stefan type problems
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2004
SP  - 345
EP  - 355
VL  - 15
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a14/
LA  - en
ID  - RLIN_2004_9_15_3-4_a14
ER  - 
%0 Journal Article
%A Athanasopoulos, Ioannis
%T Free boundary regularity in Stefan type problems
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2004
%P 345-355
%V 15
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a14/
%G en
%F RLIN_2004_9_15_3-4_a14
Athanasopoulos, Ioannis. Free boundary regularity in Stefan type problems. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 345-355. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a14/

[1] H.W. Alt - L.A. Caffarelli - A. Friedman, Variational problems with two-phases and their free boundaries. Trans. Amer. Math. Soc., 282, 1984, 431-461. | DOI | MR | Zbl

[2] I. Athanasopoulos - L.A. Caffarelli - S. Salsa, Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems. Annals Math., 143, 1996, 413-434. | DOI | MR | Zbl

[3] I. Athanasopoulos - L.A. Caffarelli - S. Salsa, Regularity of the free boundary in parabolic phase transition problems. Acta Math., 176, 1996, 245-282. | DOI | MR | Zbl

[4] I. Athanasopoulos - L.A. Caffarelli - S. Salsa, Phase transition problems of parabolic type: flat free boundaries are smooth. Comm. Pure Appl. Math., 51, 1998, 77-112. | DOI | MR | Zbl

[5] I. Athanasopoulos - L.A. Caffarelli - S. Salsa, Stefan-like problems with curvature. J. Geom. Anal., 13, 2003, 21-27. | DOI | MR | Zbl

[6] L.A. Caffarelli - L.C. Evans, Continuity of the temperature in two-phase Stefan problems. Arch. Rational Mech., 81, 1983, 199-220. | DOI | MR | Zbl

[7] L.A. Caffarelli - L. Wang, A Harnock inequality approach to the interior regularity of elliptic equations. Ind. Univ. Math. J., 42, 1993, 145-157. | DOI | MR | Zbl

[8] A. Friedman, Variational Problems and Free Boundary Problems. Wiley, New York 1982. | MR

[9] L.I. Rubinstein, Passive transfer of low-molecular nonelectrolytes across deformable membranes. I. Equations of convective-diffusion transfer of nonelectrolytes across deformable membranes of large curvature. Bull. of Math. Biology, 36, 1974, 365-377. | Zbl

[10] L. Wang, On the regularity theory of fully nonlinear parabolic equation II. Comm. Pure Appl. Math., 45, 1992, 141-178. | DOI | MR | Zbl

[11] K.-O. Widman, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations. Math. Scad., 21, 1967, 17-37. | fulltext EuDML | MR | Zbl