Boundary trace of solutions of semilinear elliptic equalities and inequalities
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 301-314
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
The boundary trace problem for positive solutions of $$-\triangle u + g(x ,u) \ge 0$$ is considered for nonlinearities of absorption type, and three different methods for defining the trace are compared. The boundary trace is obtained as a generalized Borel measure. The associated Dirichlet problem with boundary data in the set of such Borel measures is studied.
@article{RLIN_2004_9_15_3-4_a11,
author = {V\'eron, Laurent},
title = {Boundary trace of solutions of semilinear elliptic equalities and inequalities},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {301--314},
year = {2004},
volume = {Ser. 9, 15},
number = {3-4},
zbl = {1113.35075},
mrnumber = {MR2148887},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a11/}
}
TY - JOUR AU - Véron, Laurent TI - Boundary trace of solutions of semilinear elliptic equalities and inequalities JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2004 SP - 301 EP - 314 VL - 15 IS - 3-4 UR - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a11/ LA - en ID - RLIN_2004_9_15_3-4_a11 ER -
%0 Journal Article %A Véron, Laurent %T Boundary trace of solutions of semilinear elliptic equalities and inequalities %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2004 %P 301-314 %V 15 %N 3-4 %U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a11/ %G en %F RLIN_2004_9_15_3-4_a11
Véron, Laurent. Boundary trace of solutions of semilinear elliptic equalities and inequalities. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 301-314. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a11/