Boundary trace of solutions of semilinear elliptic equalities and inequalities
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 301-314.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The boundary trace problem for positive solutions of $$-\triangle u + g(x ,u) \ge 0$$ is considered for nonlinearities of absorption type, and three different methods for defining the trace are compared. The boundary trace is obtained as a generalized Borel measure. The associated Dirichlet problem with boundary data in the set of such Borel measures is studied.
@article{RLIN_2004_9_15_3-4_a11,
     author = {V\'eron, Laurent},
     title = {Boundary trace of solutions of semilinear elliptic equalities and inequalities},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {301--314},
     publisher = {mathdoc},
     volume = {Ser. 9, 15},
     number = {3-4},
     year = {2004},
     zbl = {1113.35075},
     mrnumber = {1226934},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a11/}
}
TY  - JOUR
AU  - Véron, Laurent
TI  - Boundary trace of solutions of semilinear elliptic equalities and inequalities
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2004
SP  - 301
EP  - 314
VL  - 15
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a11/
LA  - en
ID  - RLIN_2004_9_15_3-4_a11
ER  - 
%0 Journal Article
%A Véron, Laurent
%T Boundary trace of solutions of semilinear elliptic equalities and inequalities
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2004
%P 301-314
%V 15
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a11/
%G en
%F RLIN_2004_9_15_3-4_a11
Véron, Laurent. Boundary trace of solutions of semilinear elliptic equalities and inequalities. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 301-314. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a11/

[1] C. Bandle - M. Marcus, Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior. J. Anal. Math., 58, 1992, 9-24. | DOI | MR | Zbl

[2] Y. Du - Z. Guo, The degenerate logistic model and a singularly mixed boundary blow-up problem. Preprint. | MR | Zbl

[3] E.B. Dynkin - S.E. Kuznetsov, Trace on the boundary for solutions of nonlinear differential equations. Trans. A.M.S., 350, 1998, 4499-4519. | DOI | MR | Zbl

[4] E.B. Dynkin - S.E. Kuznetsov, Solutions of nonlinear differential equtions on a Riemannian manifold and their trace on the Martin boundary. Trans. A.M.S., 350, 1998, 4521-4552. | DOI | MR | Zbl

[5] E.B. Dynkin - S.E. Kuznetsov, Fine topology and fine trace on the boundary associated with a class of quasilinear differential equations. Comm. Pure Appl. Math., 51, 1998, 897-936. | DOI | MR | Zbl

[6] J. Fabbri - J.-R. Licois, Behavior at boundary of solutions of a weakly superlinear elliptic equation. Adv. Nonlinear Studies, 2, 2002, 147-176. | MR | Zbl

[7] A. Gmira - L. Véron, Boundary singularities of solutions of some nonlinear elliptic equations. Duke Math. J., 64, 1991, 271-324. | fulltext mini-dml | DOI | MR | Zbl

[8] M. Grillot - L. Véron, Boundary trace of solutions of the Prescribed Gaussian curvature equation. Proc. Roy. Soc. Edinburgh, 130 A, 2000, 1-34. | MR | Zbl

[9] J.B. Keller, On solutions of $\triangle u = f(u)$. Comm. Pure Appl. Math., 10, 1957, 503-510. | MR | Zbl

[10] J.F. Le Gall, Les solutions positives de $\triangle u = u^{2}$ dans le disque unité. C.R. Acad. Sci. Paris, 317, Ser. I, 1993, 873-878. | MR | Zbl

[11] J.F. Le Gall, The brownian snake and solutions of $\triangle u = u^{2}$ in a domain. Prob. Theory Rel. Fields, 102, 1995, 393-432. | DOI | MR | Zbl

[12] M. Marcus - L. Véron, Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations. Ann. Inst. H. Poincaré, 14, 1997, 237-274. | fulltext EuDML | fulltext mini-dml | DOI | MR | Zbl

[13] M. Marcus - L. Véron, Traces au bord des solutions positives d’équations elliptiques non-linéaires. C.R. Acad. Sci. Paris, 321, Ser. I, 1995, 179-184. | MR | Zbl

[14] M. Marcus - L. Véron, Traces au bord des solutions positives d’équations elliptiques et paraboliques non-linéaires: résultats d’existence et d’unicité. C.R. Acad. Sci. Paris, 323, Ser. I, 1996, 603-608. | MR | Zbl

[15] M. Marcus - L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case. Arch. Rat. Mech. Anal., 144, 1998, 201-231. | fulltext mini-dml | DOI | MR | Zbl

[16] M. Marcus - L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case. J. Math. Pures Appl., 77, 1998, 481-524. | DOI | MR | Zbl

[17] M. Marcus - L. Véron, Removable singularities and boundary traces. J. Math. Pures Appl., 80, 2001, 879-900. | DOI | MR | Zbl

[18] M. Marcus - L. Véron, The boundary trace and generalized B.V.P. for semilinear elliptic equations with a strong absorption. Comm. Pure Appl. Math., 56, 2003, 689-731. | DOI | MR | Zbl

[19] M. Marcus - L. Véron, Initial trace of positive solutions to semilinear parabolic inequalities. Adv. Nonlinear Studies, 2, 2002, 395-436. | MR | Zbl

[20] M. Marcus - L. Véron, Boundary trace of positive solutions to nonlinear elliptic inequalities. Ann. Scu. Norm. Sup. Pisa, to appear. | fulltext EuDML | Zbl

[21] R. Osserman, On the inequality $\triangle u \ge f(u)$. Pacific J. Math., 7, 1957, 1641-1647. | fulltext mini-dml | MR | Zbl

[22] Y. Richard - L. Véron, Isotropic singularities of nonlinear elliptic inequalities. Ann. Inst. H. Poincaré, 6, 1989, 37-72. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[23] L. Véron, Semilinear elliptic equations with uniform blow-up on the boundary. J. Anal. Math., 59, 1992, 231-250. | DOI | MR | Zbl