The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 281-300.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We review the main mathematical questions posed in blow-up problems for reaction-diffusion equations and discuss results of the author and collaborators on the subjects of continuation of solutions after blow-up, existence of transient blow-up solutions (so-called peaking solutions) and avalanche formation as a mechanism of complete blow-up.
@article{RLIN_2004_9_15_3-4_a10,
     author = {V\'azquez, Juan Luis},
     title = {The problems of blow-up for nonlinear heat equations. {Complete} blow-up and avalanche formation},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {281--300},
     publisher = {mathdoc},
     volume = {Ser. 9, 15},
     number = {3-4},
     year = {2004},
     zbl = {1162.35392},
     mrnumber = {2026939},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a10/}
}
TY  - JOUR
AU  - Vázquez, Juan Luis
TI  - The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2004
SP  - 281
EP  - 300
VL  - 15
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a10/
LA  - en
ID  - RLIN_2004_9_15_3-4_a10
ER  - 
%0 Journal Article
%A Vázquez, Juan Luis
%T The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2004
%P 281-300
%V 15
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a10/
%G en
%F RLIN_2004_9_15_3-4_a10
Vázquez, Juan Luis. The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 281-300. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a10/

[1] M. Anderson, Geometrization of $3$-Manifolds via the Ricci Flow. Notices of the AMS, 51, 2, 2004, 184-193. | MR | Zbl

[2] C. Bandle - H. Bruner, Blow-up in diffusion equations: A survey. J. Comput. Appl. Math., 97, 1998, 3-22. | DOI | MR | Zbl

[3] P. Baras - L. Cohen, Complete blow-up after $T_{max}$ for the solution of a semilinear heat equation. J. Funct. Anal., 71, 1987, 142-174. | DOI | MR | Zbl

[4] J. Bebernes - D. Eberly, Mathematical Problems from Combustion Theory. Applied Mathematics Series, 83, Springer-Verlag, New York 1989. | MR | Zbl

[5] J. Bebernes - C.-M. Li - Yi Li, Travelling fronts in cylinders and their stability. Rocky Mountain J. Math., 27, 1997, 123-150. | fulltext mini-dml | DOI | MR | Zbl

[6] J.D. Buckmaster - G.S.S. Ludford, Lectures on Mathematical Combustion. CBMS-NSF Regional Conf. Series Appl. Math., 43, SIAM, Philadelphia 1983. | DOI | MR | Zbl

[7] E. Chasseigne - J.L. Vázquez, Theory of extended solutions for fast diffusion equations in optimal classes of data. Radiation from singularities. Arch. Ration. Mech. Anal., 164, 2002, n. 2, 133-187. | DOI | MR | Zbl

[8] M. Fila - H. Matano, Connecting equilibria by blow-up solutions. In: International Conference on Differential Equations (Berlin 1999). 2 voll., World Sci. Publishing, River Edge, NJ 2000, 741-743. | MR | Zbl

[9] A. Friedman, Remarks on nonlinear parabolic equations. In: Applications of Nonlinear Partial Differential Equations in Mathematical Physics. Amer. Math. Soc., Providence, RI, 1965, 3-23. | MR | Zbl

[10] H. Fujita, On the blowing-up of solutions of the Cauchy problem for $u_{t} = \triangle u + u^{1+\alpha}$. J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 13, 1966, 109-124. | MR | Zbl

[11] H. Fujita, On the nonlinear equations $\triangle u + e^{u} = 0$ and $v_{t} = \triangle v + e^{v}$$\triangle u + e^{u} = 0$ and $v_{t} = \triangle v + e^{v}$. Bull. Amer. Math. Soc., 75, 1969, 132-135. | fulltext mini-dml | MR | Zbl

[12] V.A. Galaktionov - S.A. Posashkov, The equation $u_{t} = u_{xx} + u^{\beta}$. Localization, asymptotic behaviour of unbounded solutions. Keldysh Inst. Appl. Math. Acad. Sci. USSR, Preprint n. 97, 1985 (in Russian). | MR

[13] V.A. Galaktionov - S.A. Posashkov, Application of new comparison theorems in the investigation of unbounded solutions of nonlinear parabolic equations. Diff. Urav., 22, 1986, 1165-1173. | MR | Zbl

[14] V.A. Galaktionov - J.L. Vázquez, Necessary and sufficient conditions for complete blow-up and extinction for one-dimensional quasilinear heat equations. Arch. Rational Mech. Anal., 129, 1995, 225-244. | DOI | MR | Zbl

[15] V.A. Galaktionov - J.L. Vázquez, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions. Comm. Pure Appl. Math., 50, 1997, 1-67. | Zbl

[16] V.A. Galaktionov - J.L. Vázquez, Incomplete blow-up and singular interfaces for quasilinear heat equations. Comm. Partial Differ. Equat., 22, 1997, 1405-1452. | DOI | MR | Zbl

[17] V.A. Galaktionov - J.L. Vázquez, The problem of blow-up in nonlinear parabolic equations. In: C. CONCA - M. DEL PINO - P. FELMER - R. MANÁSEVICH (eds.), Current Developments in PDE (a special issue: Proceedings of the Summer Course in Temuco, Chile, jan. 1999). Discrete Contin. Dynam. Systems, A, 8, 2, 2002, 399-433. | DOI | MR | Zbl

[18] Y. Giga - R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations. Comm. Pure Appl. Math., 38, 1985, 297-319. | DOI | MR | Zbl

[19] Y. Giga - R.V. Kohn, Characterizing blow-up using similarity variables. Indiana Univ. Math. J., 36, 1987, 1-40. | DOI | MR | Zbl

[20] Y. Giga - R.V. Kohn, Nondegeneracy of blow-up for semilinear heat equations. Comm. Pure Appl. Math., 42, 1989, 845-884. | DOI | MR | Zbl

[21] R. Hamilton, Three manifolds of positive Ricci curvature. J. Differential Geom., 17, 1982, 255-306. | fulltext mini-dml | MR | Zbl

[22] R. Hamilton, The formation of singularities in the Ricci flow. Surveys in Differential Geometry, vol. 2, International Press, 1955, 7-136. | MR | Zbl

[23] S. Kaplan, On the growth of solutions of quasilinear parabolic equations. Comm. Pure Appl. Math., 16, 1963, 305-330. | MR | Zbl

[24] J.L. Kazdan - F.W. Warner, Curvature functions for compact 2-manifolds. Annals of Math., 99, 1974, 14-47. | MR | Zbl

[25] A.N. Kolmogorov - I.G. Petrovskii - N.S. Piskunov, A study of a diffusion equation coupled with the growth in the amount of a material, and its application to a biological problem. Byull. Moskov. Gos. Univ., Sect. A, 1, n. 6, 1937, 1-26.

[26] A.A. Lacey - D. Tzanetis, Complete blow-up for a semilinear diffusion equation with a sufficiently large initial condition. IMA J. Appl. Math., 42, 1988, 207-215. | DOI | MR | Zbl

[27] A.A. Lacey - D. Tzanetis, Global, unbounded solutions to a parabolic equation. J. Differ. Equat., 101, 1993, 80-102. | DOI | MR | Zbl

[28] L.A. Lepin, Self-similar solutions of a semilinear heat equation. Mathematical Modelling, 2, 1990, 63-74 (in Russian). | MR | Zbl

[29] H.A. Levine, Quenching, nonquenching and beyond quenching for solutions of some parabolic equations. Ann. Mat. Pura Appl., 155, 1989, 243-290 (also, Quenching and beyond: a survey of recent results. Proc. Int. Conf. on Nonlinear Mathematical Problems in Science and Industry (Iwaki, 1992), GAKUTO Internat. Ser. Math. Sci. and Appl., vol. II, Tokyo 1993, 501-512). | DOI | MR | Zbl

[30] K. Masuda, Analytic solutions of some nonlinear diffusion equations. Math. Z., 187, 1984, 61-73. | fulltext EuDML | DOI | MR | Zbl

[31] F. Merle - H. Zaag, Stability of the blow-up profile for equations of the type $u_{t} = \triangle u + |u|^{p-1}u$. Duke Math. J., 86, 1997, 143-195. | fulltext mini-dml | DOI | MR | Zbl

[32] W.F. Osgood, Beweis der Existenz einer Lösung der Differentialgleichung $dy/dx = f(x,y)$ ohne Hinzunahme der Cauchy-Lipschitzschen Bedingung. Monatshefte für Mathematik und Physik (Vienna), 9, 1898, 331-345. | Jbk 29.0260.03 | DOI | MR

[33] I. Peral - J.L. Vázquez, On the stability or instability of the singular solution of the semilinear heat equation with exponential reaction term. Arch. Rat. Mech. Anal., 129, 1995, 201-224. | DOI | MR | Zbl

[34] F. Quirós - J.D. Rossi - J.L. Vázquez, Complete blow-up and thermal avalanche for heat equations with nonlinear boundary conditions. Comm. Partial Differential Equations, 27, 2002, 395-424. | DOI | MR | Zbl

[35] F. Quirós - J.D. Rossi - J.L. Vázquez, Thermal avalanche for blow-up solutions of semilinear heat equations. Comm. Pure Appl. Math., 57, 2004, n. 1, 59-98. | DOI | MR | Zbl

[36] A.A. Samarskii - V.A. Galaktionov - S.P. Kurdyumov - A.P. Mikhailov, Blow-up in problems for quasilinear parabolic equations. Nauka, Moscow 1987 (in Russian; English transl.: Walter de Gruyter, Berlin 1995). | Zbl

[37] J. Smoller, Shock-Waves and Reaction-Diffusion Equations. Springer-Verlag, New York 1983. | MR | Zbl

[38] J.L. Vázquez, Domain of existence and blowup for the exponential reaction-diffusion equation. Indiana Univ. Math. J., 48, 2, 1999, 677-709. | DOI | MR | Zbl

[39] J.L. Vázquez, Asymptotic behaviour for the $PME$ in the whole space. J. Evol. Equ., 3, 2003, n. 1, 67-118. | Zbl

[40] J.J.L. Velázquez, Classification of singularities for blowing-up solutions in higher dimensions. Trans. Amer. Math. Soc., 338, 1993, 441-464. | DOI | MR | Zbl

[41] Ya.B. Zel'Dovich - G.I. Barenblatt - V.B. Librovich - G.M. Makhviladze, The Mathematical Theory of Combustion and Explosions. Consultants Bureau, New York 1985. | DOI | MR

[42] Ya.B. Zel'Dovich - D.A. Frank-Kamenetskii, The theory of thermal propagation of flames. Zh. Fiz. Khim., 12, 1938, 100-105 (in Russian; English transl. in: Collected Works of Ya.B. Zeldovich, vol. 1, Princeton Univ. Press, 1992).