Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2004_9_15_3-4_a0, author = {Friedman, Avner}, title = {Free boundary problems arising in tumor models}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {161--168}, publisher = {mathdoc}, volume = {Ser. 9, 15}, number = {3-4}, year = {2004}, zbl = {1162.35460}, mrnumber = {1976462}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a0/} }
TY - JOUR AU - Friedman, Avner TI - Free boundary problems arising in tumor models JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2004 SP - 161 EP - 168 VL - 15 IS - 3-4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a0/ LA - en ID - RLIN_2004_9_15_3-4_a0 ER -
%0 Journal Article %A Friedman, Avner %T Free boundary problems arising in tumor models %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2004 %P 161-168 %V 15 %N 3-4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a0/ %G en %F RLIN_2004_9_15_3-4_a0
Friedman, Avner. Free boundary problems arising in tumor models. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 161-168. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a0/
[1] A free boundary problem for an elliptic-parabolic system: Application to a model of tumor growth. Communications in PDE, 28, 2003, 517-560. | DOI | MR | Zbl
- ,[2] Global existence and stability for an elliptic-parabolic free boundary problem; An application to a model of tumor growth. Indiana University Math. J., 52, 2003, 1265-1304. | DOI | MR | Zbl
- ,[3] Growth of nonnecrotic tumours in the presence and absence of inhibitors. Mathematical Biosciences, 181, 1995, 130-151. | Zbl
- ,[4] A hyperbolic free boundary problem modeling tumor growth: Asymptotic behavior. To appear. | Zbl
- - ,[5] A free boundary problem for elliptic-hyperbolic system: An application to tumor growth. SIAM J. Math. Analysis, 35, 4, 2003, 974-976. | DOI | MR | Zbl
- ,[6] Analysis of a mathematical model of the effect of inhibitors on the growth of tumors. Math. Biosci., 164, 2000, 103-137. | DOI | MR | Zbl
- ,[7] A free boundary problem for a singular system of differential equations: An application to a model of tumor growth. Trans. AMS, 355, 2003, 3537-3590. | DOI | MR | Zbl
- ,[8] A hyperbolic free boundary problem modeling tumor growth. Interfaces and Free Boundaries, 5, 2003, 159-181. | DOI | MR | Zbl
- ,[9] Symmetry-breaking bifurcations of free boundary problems in three dimensions. Asymptotic Analysis, 35, 2003, 187-206. | MR | Zbl
- ,[10] Analysis of a mathematical model for the growth of tumors. J. Math. Biol., 38, 1999, 262-284. | DOI | MR | Zbl
- ,[11] Symmetry-breaking bifurcation of analytic solutions to free boundary problems: An application to a model of tumor growth. Trans. Amer. Math. Soc., 353, 2000, 1587-1634. | DOI | MR | Zbl
- ,[12] On the existence of spatially patterned dormant malignancies in a model for the growth of non-necrotic vascular tumor. Math. Models and Methods in Appl. Sciences, 77, 2001, 1-25. | DOI | MR | Zbl
- ,[13] Analysis of a model of a virus that replicates selectively in tumor cells. J. Math. Biology, 47, 2003, 391-423. | DOI | MR | Zbl
- ,[14] On the growth and stability of cell cultures and solid tumors. J. Theor. Biol., 56, 1976, 229-242. | MR
,[15] The migration of cells in multicell tumor spheroids. Bull. Math. Biol., 63, 2001, 231-257.
- - - ,[16] Modeling and analysis of a virus that replicate selectively in tumor cells. Bull. Math. Biology, 63, 2001, 731-768.
- - - ,