Nonlinear equations on Carnot groups and curvature problems for CR manifolds
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 3, pp. 227-238.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We give a short overview of sub-Laplacians on Carnot groups starting from a result by Caccioppoli dated 1934. Then we show that sub-Laplacians on Carnot groups of step one arise in studying curvature problems for $CR$ manifolds. We restrict our presentation to the cases of the Webster-Tanaka curvature problem for the $CR$ sphere and of the Levi-curvature equation for strictly pseudoconvex functions.
@article{RLIN_2003_9_14_3_a5,
     author = {Lanconelli, Ermanno},
     title = {Nonlinear equations on {Carnot} groups and curvature problems for {CR} manifolds},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {227--238},
     publisher = {mathdoc},
     volume = {Ser. 9, 14},
     number = {3},
     year = {2003},
     zbl = {1225.35059},
     mrnumber = {1614571},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_3_a5/}
}
TY  - JOUR
AU  - Lanconelli, Ermanno
TI  - Nonlinear equations on Carnot groups and curvature problems for CR manifolds
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2003
SP  - 227
EP  - 238
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_3_a5/
LA  - en
ID  - RLIN_2003_9_14_3_a5
ER  - 
%0 Journal Article
%A Lanconelli, Ermanno
%T Nonlinear equations on Carnot groups and curvature problems for CR manifolds
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2003
%P 227-238
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_3_a5/
%G en
%F RLIN_2003_9_14_3_a5
Lanconelli, Ermanno. Nonlinear equations on Carnot groups and curvature problems for CR manifolds. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 3, pp. 227-238. http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_3_a5/

[1] A. Ambrosetti - M. Badiale, Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. Inst. Henry Poincaré, Analyse non Linéaire, 15, 1998, 233-252. | fulltext EuDML | fulltext mini-dml | DOI | MR | Zbl

[2] E. Bedford - B. Gaveau, Hypersurfaces with bounded Levi form. Ind. Univ. Math. J., 27, 1978, 867-877. | MR | Zbl

[3] R. Caccioppoli, Sui teoremi di esistenza di Riemann. Rend. Acc. Sc. Napoli, 4, 1934, 49-54. | Jbk 60.0310.06 | Zbl

[4] G. Citti, $C^{\infty}$-regularity of solutions of the Levi equation. Ann. Inst. Henry Poincaré, Analyse non Linéaire, 15, 1998, 517-534. | fulltext EuDML | fulltext mini-dml | DOI | MR | Zbl

[5] G. Citti - E. Lanconelli - A. Montanari, Smoothness of Lipschitz-continuous graphs with non-vanishing Levi curvature. Acta Math., 118, 2002, 87-128. | DOI | MR | Zbl

[6] G.B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Math., 13, 1975, 161-207. | MR | Zbl

[7] L. Gallardo, Capacités, mouvement Brownien et problème de l’épine de Lebesgue sur le groups de Lie nilpotents. Proc. VII Oberwolfach Conference on Probability measures on groups. Lectures Notes in Math., 928, Springer-Verlag, Berlin-New York 1982, 96-120. | MR | Zbl

[8] N. Gamara, The $CR$ Yamabe conjecture: the case $n=1$. J. Eur. Math. Soc., 3, 2001, 105-137. | DOI | MR | Zbl

[9] N. Gamara - R. Yacoub, $CR$ Yamabe conjecture: the conformally flat case. Pacific J. of Math., 201, 2001, 121-175. | DOI | MR | Zbl

[10] E. Hebey, Changement de métriques conformes sur la sphére. Le problème de Nirenberg. Bull. Sc. Math., 114, 1990, 215-242. | MR | Zbl

[11] L. Hormander, Hypoelliptic second order differential equations. Acta Math., 119, 1967, 147-171. | MR | Zbl

[12] D. Jerison - J.M. Lee, Intrinsic $CR$ normal coordinates and the $CR$ Yamabe problem. J. Amer. Math. Soc., 1, 1988, 1-13. | fulltext EuDML | MR | Zbl

[13] D. Jerison - J.M. Lee, Extremals of the Sobolev inequality on the Heisenberg group and the $CR$ Yamabe problem. J. of Diff. Geom., 29, 1989, 303-343. | fulltext mini-dml | DOI | MR | Zbl

[14] J.J. Kohn - L. Nirenberg, A pseudoconvex domain not admitting a holomorphic support function. Math. Ann., 201, 1973, 265-268. | fulltext EuDML | MR | Zbl

[15] A. Kolmogorov, Zufällige Bewegungen. Ann. of Math., 35, 1934, 116-117. | Jbk 60.1159.01 | DOI | MR | Zbl

[16] F. Lascialfari - A. Montanari, Smooth regularity for solutions of the Levi Monge-Ampère equations. Rend. Mat. Acc. Lincei, s. 9, v. 12, 2001, 1633-1664. | fulltext bdim | MR | Zbl

[17] E.E. Levi, Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse. Ann. di Mat. Pura ed Appl., 17, 1910, 61-87. | Jbk 41.0487.01

[18] E.E. Levi, Sulle ipersuperficie dello spazio a 4 dimensioni che possono essere frontiere del campo di esistenza di una funzione analitica di due variabili complesse. Ann. di Mat. Pura ed Appl., 18, 1911, 69-79. | Jbk 42.0449.02

[19] A. Montanari - E. Lanconelli, Strong comparison principle for symmetric functions in the eigenvalues of the Levi form. Preprint.

[20] A. Malchiodi - F. Uguzzoni, A perturbation result for the Webster scalar curvature problem on the $CR$ sphere. J. Math. Pures Appl., 81, 2002, 983-997. | DOI | MR | Zbl

[21] L.P. Rothschild - E.M. Stein, Hypoelliptic differential operators and nilpotent groups. Acta Math., 137, 1976, 247-320. | MR | Zbl

[22] Z. Slodkowski - G. Tomassini, Weak solutions for the Levi equation and envelope of holomorphy. J. Funct. Anal., 101, 1991, 392-407. | DOI | MR | Zbl

[23] Z. Slodkowski - G. Tomassini, The Levi equation in higher dimension and relationships to the envelope of holomorphy. Amer. J. of Math., 116, 1994, 392-407. | DOI | MR | Zbl

[24] H. Weyl, The method of the orthogonal projection in Potential Theory. Duke Math. J., 7, 1940, 411-444. | fulltext mini-dml | Jbk 66.0444.01 | MR