Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2003_9_14_3_a4, author = {Li, YanYan}, title = {Liouville type theorems for some conformally invariant fully nonlinear equations}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {219--225}, publisher = {mathdoc}, volume = {Ser. 9, 14}, number = {3}, year = {2003}, zbl = {1221.35149}, mrnumber = {982351}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_3_a4/} }
TY - JOUR AU - Li, YanYan TI - Liouville type theorems for some conformally invariant fully nonlinear equations JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2003 SP - 219 EP - 225 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_3_a4/ LA - en ID - RLIN_2003_9_14_3_a4 ER -
%0 Journal Article %A Li, YanYan %T Liouville type theorems for some conformally invariant fully nonlinear equations %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2003 %P 219-225 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_3_a4/ %G en %F RLIN_2003_9_14_3_a4
Li, YanYan. Liouville type theorems for some conformally invariant fully nonlinear equations. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 3, pp. 219-225. http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_3_a4/
[1] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math., 42, 1989, 271-297. | DOI | MR | Zbl
- - ,[2] The Dirichlet problem for nonlinear second-order elliptic equations, III: Functions of the eigenvalues of the Hessian. Acta Math., 155, 1985, 261-301. | DOI | MR | Zbl
- - ,[3] An a priori estimate for a fully nonlinear equation on four-manifolds. Preprint. | Zbl
- - ,[4] Entire solutions of a fully nonlinear equation. Preprint. | MR | Zbl
- - ,[5] Classification of solutions of some nonlinear elliptic equations. Duke Math. J., 63, 1991, 615-622. | fulltext mini-dml | DOI | MR | Zbl
- ,[6] Symmetry and related properties via the maximum principle. Comm. Math. Phys., 68, 1979, 209-243. | fulltext mini-dml | MR | Zbl
- - ,[7] Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math., 34, 1981, 525-598. | DOI | MR | Zbl
- ,[8] On some conformally invariant fully nonlinear equations. C. R. Acad. Sci. Paris, Ser. I, 334, 2002, 1-6. | fulltext mini-dml | MR | Zbl
- ,[9] On some conformally invariant fully nonlinear equations. Comm. Pure Appl. Math., to appear. | fulltext mini-dml | MR | Zbl
- ,[10] A general Liouville type theorem for some conformally invariant fully nonlinear equations. arXiv:math.AP/0301239 v1 21 Jan 2003. | fulltext mini-dml | Zbl
- ,[11] Further results on Liouville type theorems for some conformally invariant fully nonlinear equations. arXiv:math.AP/0301254 v1 22 Jan 2003. | fulltext mini-dml | Zbl
- ,[12] On some conformally invariant fully nonlinear equations, Part II: Liouville, Harnack and Yamabe. In preparation. | fulltext mini-dml | Zbl
- ,[13] Liouville type theorems and Harnack type inequalities for semilinear elliptic equations. Journal d’Analyse Mathematique, to appear. | DOI | MR | Zbl
- ,[14] Uniqueness theorems through the method of moving spheres. Duke Math. J., 80, 1995, 383-417. | fulltext mini-dml | DOI | MR | Zbl
- ,[15] The conjecture on conformal transformations of Riemannian manifolds. J. Diff. Geom., 6, 1971, 247-258. | fulltext mini-dml | MR | Zbl
,[16] Conformal geometry, contact geometry, and the calculus of variations. Duke Math. J., 101, 2000, 283-316. | fulltext mini-dml | DOI | MR | Zbl
,[17] Conformally invariant Monge-Ampere equations: global solutions. Trans. Amer. Math. Soc., 352, 2000, 4371-4379. | DOI | MR | Zbl
,