Liouville type theorems for some conformally invariant fully nonlinear equations
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 3, pp. 219-225.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This is a report on some joint work with Aobing Li on Liouville type theorems for some conformally invariant fully nonlinear equations.
@article{RLIN_2003_9_14_3_a4,
     author = {Li, YanYan},
     title = {Liouville type theorems for some conformally invariant fully nonlinear equations},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {219--225},
     publisher = {mathdoc},
     volume = {Ser. 9, 14},
     number = {3},
     year = {2003},
     zbl = {1221.35149},
     mrnumber = {982351},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_3_a4/}
}
TY  - JOUR
AU  - Li, YanYan
TI  - Liouville type theorems for some conformally invariant fully nonlinear equations
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2003
SP  - 219
EP  - 225
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_3_a4/
LA  - en
ID  - RLIN_2003_9_14_3_a4
ER  - 
%0 Journal Article
%A Li, YanYan
%T Liouville type theorems for some conformally invariant fully nonlinear equations
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2003
%P 219-225
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_3_a4/
%G en
%F RLIN_2003_9_14_3_a4
Li, YanYan. Liouville type theorems for some conformally invariant fully nonlinear equations. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 3, pp. 219-225. http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_3_a4/

[1] L. Caffarelli - B. Gidas - J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math., 42, 1989, 271-297. | DOI | MR | Zbl

[2] L. Caffarelli - L. Nirenberg - J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations, III: Functions of the eigenvalues of the Hessian. Acta Math., 155, 1985, 261-301. | DOI | MR | Zbl

[3] S.Y. A. Chang - M. Gursky - P. Yang, An a priori estimate for a fully nonlinear equation on four-manifolds. Preprint. | Zbl

[4] S.Y. A. Chang - M. Gursky - P. Yang, Entire solutions of a fully nonlinear equation. Preprint. | MR | Zbl

[5] W. Chen - C. Li, Classification of solutions of some nonlinear elliptic equations. Duke Math. J., 63, 1991, 615-622. | fulltext mini-dml | DOI | MR | Zbl

[6] B. Gidas - W.M. Ni - L. Nirenberg, Symmetry and related properties via the maximum principle. Comm. Math. Phys., 68, 1979, 209-243. | fulltext mini-dml | MR | Zbl

[7] B. Gidas - J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math., 34, 1981, 525-598. | DOI | MR | Zbl

[8] A. Li - Y.Y. Li, On some conformally invariant fully nonlinear equations. C. R. Acad. Sci. Paris, Ser. I, 334, 2002, 1-6. | fulltext mini-dml | MR | Zbl

[9] A. Li - Y.Y. Li, On some conformally invariant fully nonlinear equations. Comm. Pure Appl. Math., to appear. | fulltext mini-dml | MR | Zbl

[10] A. Li - Y.Y. Li, A general Liouville type theorem for some conformally invariant fully nonlinear equations. arXiv:math.AP/0301239 v1 21 Jan 2003. | fulltext mini-dml | Zbl

[11] A. Li - Y.Y. Li, Further results on Liouville type theorems for some conformally invariant fully nonlinear equations. arXiv:math.AP/0301254 v1 22 Jan 2003. | fulltext mini-dml | Zbl

[12] A. Li - Y.Y. Li, On some conformally invariant fully nonlinear equations, Part II: Liouville, Harnack and Yamabe. In preparation. | fulltext mini-dml | Zbl

[13] Y.Y. Li - L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations. Journal d’Analyse Mathematique, to appear. | DOI | MR | Zbl

[14] Y.Y. Li - M. Zhu, Uniqueness theorems through the method of moving spheres. Duke Math. J., 80, 1995, 383-417. | fulltext mini-dml | DOI | MR | Zbl

[15] M. Obata, The conjecture on conformal transformations of Riemannian manifolds. J. Diff. Geom., 6, 1971, 247-258. | fulltext mini-dml | MR | Zbl

[16] J. Viaclovsky, Conformal geometry, contact geometry, and the calculus of variations. Duke Math. J., 101, 2000, 283-316. | fulltext mini-dml | DOI | MR | Zbl

[17] J. Viaclovsky, Conformally invariant Monge-Ampere equations: global solutions. Trans. Amer. Math. Soc., 352, 2000, 4371-4379. | DOI | MR | Zbl