Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2003_9_14_3_a1, author = {Ambrosio, Luigi}, title = {On some recent developments of the theory of sets of finite perimeter}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {179--187}, publisher = {mathdoc}, volume = {Ser. 9, 14}, number = {3}, year = {2003}, zbl = {1225.49039}, mrnumber = {1823840}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_3_a1/} }
TY - JOUR AU - Ambrosio, Luigi TI - On some recent developments of the theory of sets of finite perimeter JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2003 SP - 179 EP - 187 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_3_a1/ LA - en ID - RLIN_2003_9_14_3_a1 ER -
%0 Journal Article %A Ambrosio, Luigi %T On some recent developments of the theory of sets of finite perimeter %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2003 %P 179-187 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_3_a1/ %G en %F RLIN_2003_9_14_3_a1
Ambrosio, Luigi. On some recent developments of the theory of sets of finite perimeter. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 3, pp. 179-187. http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_3_a1/
[1] Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces. Adv. Math., 59, 2001, 51-67. | DOI | MR | Zbl
,[2] Fine properties of sets of finite perimeter in doubling metric measure spaces. Set Valued Analysis, to appear. | DOI | MR | Zbl
,[3] Rectifiable sets in metric and Banach spaces. Math. Ann., 318, 2000, 527-555. | DOI | MR | Zbl
- ,[4] Currents in metric spaces. Acta Math., 185, 2000, 1-80. | DOI | MR | Zbl
- ,[5] Weighted BV functions. Houston J. of Math., 27(3), 2001, 683-705. | MR | Zbl
,[6] A negative answer to a one-dimensional symmetry problem in the Heisenberg group. Calc. Var., to appear. | fulltext mini-dml | DOI | MR | Zbl
- ,[7] Differentiability of Lipschitz functions on metric measure spaces. Geometric and Functional Analysis, 9, 1999, 428-517. | DOI | MR | Zbl
,[8] Nuovi teoremi relativi alle misure $(r-1)$-dimensionali in uno spazio a $r$ dimensioni. Ricerche Mat., 4, 1955, 95-113. | MR | Zbl
,[9] Problema di Plateau generale e funzionali geodetici. Atti Sem. Mat. Fis. Univ. Modena, 43, 1995, 285-292. | MR | Zbl
,[10] Normal and integral currents. Ann. of Math., 72, 1960, 458-520. | MR | Zbl
- ,[11] A note on the Gauss-Green theorem. Proc. Amer. Math. Soc., 9, 1958, 447-451. | MR | Zbl
,[12] Sets of finite perimeter in the Heisenberg group. C. R. Acad. Sci. Paris, 329, 1999, 183-188. | DOI | MR | Zbl
- - ,[13] Rectifiability and Perimeter in the Heisenberg group. Math. Ann., to appear. | DOI | MR | Zbl
- - ,[14] On the structure of finite perimeter sets in step 2 Carnot groups. Preprint. | DOI | MR | Zbl
- - ,[15] Isoperimetric and Sobolev Inequalities for Carnot-Carathéodory Spaces and the Existence of Minimal Surfaces. Comm. Pure Appl. Math., 49, 1996, 1081-1144. | DOI | MR | Zbl
- ,[16] Minimal surfaces and functions of bounded variation. Birkhäuser, 1984. | MR | Zbl
,[17] Differentiability and area formula on stratified Lie groups. Houston J. of Math., 27(2), 2001, 297-323. | MR | Zbl
,[18] Functions of bounded variation on «good» metric measure spaces. Preprint Scuola Normale Superiore 2000, to appear in J. Math. Pures Appliquées. | Zbl
,[19] Minimal surfaces in the Heisenberg group. Forthcoming. | fulltext mini-dml | DOI | MR | Zbl
,[20] $\mathcal{P}$-differentiability on Carnot groups in different topologies and related topics. Proc. on Analysis and Geometry, Sobolev Institute Press, Novosibirsk 2000, 603-670. | MR | Zbl
,