Quasireverse Hölder inequalities and a priori estimates for strongly nonlinear systems
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 2, pp. 91-108.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

It is proved that a function can be estimated in the norm with a higher degree of summability if it satisfies some integral relations similar to the reverse Hölder inequalities (quasireverse Hölder inequalities). As an example, we apply this result to derive an a priori estimate of the Hölder norm for a solution of strongly nonlinear elliptic system.
Si prova che una funzione può essere stimata nella norma con un grado più alto di sommabilità se soddisfa alcune relazioni integrali simili alle disuguaglianze di Hölder inverse (disuguaglianze di Hölder quasi-inverse). Come esempio applichiamo questo risultato per desumere una stima a priori di una norma di Hölder per una soluzione di un sistema ellittico fortemente non lineare.
@article{RLIN_2003_9_14_2_a1,
     author = {Arkhipova, Arina A.},
     title = {Quasireverse {H\"older} inequalities and a priori estimates for strongly nonlinear systems},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {91--108},
     publisher = {mathdoc},
     volume = {Ser. 9, 14},
     number = {2},
     year = {2003},
     zbl = {1225.35082},
     mrnumber = {402038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_2_a1/}
}
TY  - JOUR
AU  - Arkhipova, Arina A.
TI  - Quasireverse Hölder inequalities and a priori estimates for strongly nonlinear systems
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2003
SP  - 91
EP  - 108
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_2_a1/
LA  - en
ID  - RLIN_2003_9_14_2_a1
ER  - 
%0 Journal Article
%A Arkhipova, Arina A.
%T Quasireverse Hölder inequalities and a priori estimates for strongly nonlinear systems
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2003
%P 91-108
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_2_a1/
%G en
%F RLIN_2003_9_14_2_a1
Arkhipova, Arina A. Quasireverse Hölder inequalities and a priori estimates for strongly nonlinear systems. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 2, pp. 91-108. http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_2_a1/

[1] F.W. Gehring, The $L^{p}$-integrability of the partial derivatives of a quasi conformal mapping. Acta Math., 130, 1973, 265-277. | MR | Zbl

[2] M. Giaquinta - G. Modica, Regularity results for some classes of higher order non-linear elliptic systems. J. für Reine u. Angew. Math., 311/312, 1979, 145-169. | fulltext EuDML | MR | Zbl

[3] E.W. Stredulinsky, Higher integrability from reverce Hölder inequalities. Indiana Univ. Math. J., 29, 3, 1980, 408-417. | DOI | MR | Zbl

[4] A.A. Arkhipova, Reverse Hölder inequalities with boundary integrals and $L^{p}$-estimates for solution of nonlinear elliptic and parabolic boundary-value problems. Advances in Math. Sci. Translations, Ser. 2, 164, 1995, 15-42. | MR | Zbl

[5] A.A. Arkhipova - O.A. Ladyzhenskaya, On a modification of Gehring lemma. Zapiski Nauchn, Semin. POMI, St-Petersburg, 259, 1999, 7-18. | Zbl

[6] A.A. Arkhipova, On the regularity of the solution of the Neumann problem for quasilinear parabolic systems. Russian Acad. Sci. Izv. Math., 45, 1995, 231-253. | DOI | MR | Zbl

[7] M. Giaquinta, Multiple integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Math., Studies 105, Princeton Univ. Press, Princeton 1983. | MR | Zbl

[8] M. Giaquinta - E. Giusti, Non linear elliptic systems with Quadratic growth. Manuscripta Math., 24, 1978, 323-349. | fulltext EuDML | MR | Zbl

[9] A. Kufner - O. John - S. Fučik, Functional Spases. Academia, Prague 1977.

[10] J. Frehse, On two-dimensional quasi-linear elliptic systems. Manuscripta Math., 28, 1979, 21-50. | fulltext EuDML | DOI | MR | Zbl

[11] C. Hamburger, A new partial regularity proof for solutions of nonlinear elliptic systems. Manuscripta Math., 95, n. 1, 1998, 11-31. | fulltext EuDML | DOI | MR | Zbl

[12] G.M. Troianiello, Elliptic differential equations and obstacle problems. Plenum, New York-London 1987. | MR | Zbl