Hamiltonian principle in the binary mixtures of Euler fluids with applications to the second sound phenomena
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 1, pp. 69-83.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In the present paper we compare the theory of mixtures based on Rational Thermomechanics with the one obtained by Hamilton principle. We prove that the two theories coincide in the adiabatic case when the action is constructed with the intrinsic Lagrangian. In the complete thermodynamical case we show that we have also coincidence in the case of low temperature when the second sound phenomena arises for superfluid Helium and crystals.
Nel presente lavoro noi confrontiamo la teoria delle miscele basata sulla Termomeccanica Razionale con quella ottenuta da un principio di Hamilton. Noi proviamo che le due teorie coincidono nel caso adiabatico quando l’azione è costruita mediante la Lagrangiana intrinseca. Nel caso termodinamico completo si dimostra la coincidenza delle due teorie se ci si limita nel range di basse temperature dove i fenomeni di secondo suono sono presenti per l’Elio superfluido e nei cristalli.
@article{RLIN_2003_9_14_1_a5,
     author = {Gouin, Henri and Ruggeri, Tommaso},
     title = {Hamiltonian principle in the binary mixtures of {Euler} fluids with applications to the second sound phenomena},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {69--83},
     publisher = {mathdoc},
     volume = {Ser. 9, 14},
     number = {1},
     year = {2003},
     zbl = {1225.76045},
     mrnumber = {1882568},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_1_a5/}
}
TY  - JOUR
AU  - Gouin, Henri
AU  - Ruggeri, Tommaso
TI  - Hamiltonian principle in the binary mixtures of Euler fluids with applications to the second sound phenomena
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2003
SP  - 69
EP  - 83
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_1_a5/
LA  - en
ID  - RLIN_2003_9_14_1_a5
ER  - 
%0 Journal Article
%A Gouin, Henri
%A Ruggeri, Tommaso
%T Hamiltonian principle in the binary mixtures of Euler fluids with applications to the second sound phenomena
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2003
%P 69-83
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_1_a5/
%G en
%F RLIN_2003_9_14_1_a5
Gouin, Henri; Ruggeri, Tommaso. Hamiltonian principle in the binary mixtures of Euler fluids with applications to the second sound phenomena. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 1, pp. 69-83. http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_1_a5/

[1] C. Truesdell, Sulle basi della termomeccanica. Nota II. Atti Acc. Lincei Rend. fis., s. 8, v. 21, 1957, 158-166. | Zbl

[2] I. Müller, A new approach to thermodynamics of simple mixtures. Zeitschrift für Naturforschung, 28a, 1973, 1801.

[3] K. Hutter - I. Müller, On mixtures of relativistic fluids. Helvetica physica Acta, 48, 1975, 675.

[4] W. Dreyer, Zur Thermodynamik von Helium II - Superfluides Helium mit und ohne Wirbellinien als binäre Mischung. Dissertation Technische Universität, Berlin 1983.

[5] I. Müller, Thermodynamics. Pitman, New York 1985. | Zbl

[6] L. Landau - E. Lifchsitz, Mécanique des Fluides. Mir, Moscow 1971, 418 pp.

[7] S. Putterman, Super Fluid Hydrodynamics. Elsevier, New York 1974.

[8] T. Ruggeri, The binary mixtures of Euler fluids: A unified theory of second sound phenomena. In: B. STRAUGHAN - R. GREVE - H. EHRENTRAUT - Y. WANG (eds.), Continuum Mechanics and Applications in Geophysics and the Environment. Springer-Verlag, Berlin 2001, 79 pp. | MR

[9] S. Gavrilyuk - H. Gouin - Yu. Perepechko, Hyperbolic models of homogeneous two-fluid mixtures. Meccanica, 33, 1998, 161-175. | fulltext mini-dml | DOI | MR | Zbl

[10] H. Gouin - S. Gavrilyuk, Hamilton’s principle and Rankine-Hugoniot conditions for general motions of mixtures. Meccanica, 34, 1999, 39-47. | fulltext mini-dml | DOI | MR | Zbl

[11] S. Gavrilyuk - H. Gouin, A new form of governing equations of fluids arising from Hamilton’s principle. Int. J. Eng. Sci., 37 (12), 1999, 1485-1520. | fulltext mini-dml | DOI | MR | Zbl

[12] H. Gouin, Variational theory of mixtures in continuum mechanics. Eur. J. Mech. B/Fluids, 9, 1990, 469. | fulltext mini-dml | MR | Zbl

[13] I. Müller - T. Ruggeri, Rational Extended Thermodynamics. 2nd ed., Springer Tracts in Natural Philosophy, 37, Springer-Verlag, New York 1998. | DOI | MR | Zbl

[14] T. Ruggeri - A. Muracchini - L. Seccia, A Continuum Approach to Phonon Gas and Shape Changes of Second Sound via Shock Waves Theory. Nuovo Cimento D, 16, 1994, 15.

[15] T. Ruggeri - A. Muracchini - L. Seccia, Shock Waves and Second Sound in a Rigid Heat Conductor: A Critical Temperature for NaF and Bi. Phys. Rev. Lett., 64, 1990, 2640.

[16] T. Ruggeri - A. Muracchini - L. Seccia, Second Sound and Characteristic Temperature in Solids. Phys. Rev. B, 54, 1996, 332-339.

[17] T. Ruggeri - A. Muracchini - L. Seccia, Second Sound Propagation in Superfluid Helium via Extended Thermodynamics. Lecture notes WASCOM 2001. | DOI | MR

[18] J. Serrin, Mathematical principles of classical fluid mechanics. Encyclopedia of Physics, vol. VIII/I, Springer-Verlag, Berlin 1959, 125-263. | MR