Tangential Cauchy-Riemann equations on quadratic manifolds
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 285-294.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We study the tangential Cauchy-Riemann equations $\bar{\partial}_{b} u = \omega$ for $(0,q)$-forms on quadratic $CR$ manifolds. We discuss solvability for data $\omega$ in the Schwartz class and describe the range of the tangential Cauchy-Riemann operator in terms of the signatures of the scalar components of the Levi form.
@article{RLIN_2002_9_13_3-4_a9,
     author = {Peloso, Marco M. and Ricci, Fulvio},
     title = {Tangential {Cauchy-Riemann} equations on quadratic  manifolds},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {285--294},
     publisher = {mathdoc},
     volume = {Ser. 9, 13},
     number = {3-4},
     year = {2002},
     zbl = {1225.32037},
     mrnumber = {747791},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a9/}
}
TY  - JOUR
AU  - Peloso, Marco M.
AU  - Ricci, Fulvio
TI  - Tangential Cauchy-Riemann equations on quadratic  manifolds
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2002
SP  - 285
EP  - 294
VL  - 13
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a9/
LA  - en
ID  - RLIN_2002_9_13_3-4_a9
ER  - 
%0 Journal Article
%A Peloso, Marco M.
%A Ricci, Fulvio
%T Tangential Cauchy-Riemann equations on quadratic  manifolds
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2002
%P 285-294
%V 13
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a9/
%G en
%F RLIN_2002_9_13_3-4_a9
Peloso, Marco M.; Ricci, Fulvio. Tangential Cauchy-Riemann equations on quadratic  manifolds. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 285-294. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a9/

[1] R.A. Airapetyan - G.M. Khenkin, Integral represantation of differential forms on Cauchy-Riemann manifolds and the theory of $CR$-functions. Russian Math. Surveys, 39:3, 1984, 41-118. | MR | Zbl

[2] A. Boggess, $CR$ Manifolds and the Tangential Cauchy-Riemann Complex. CRC Press, Boca Raton 1991. | MR | Zbl

[3] S. Chen - M. Shaw, Partial Differential Equations in Several Complex Variables. International Press, Providence 2001. | Zbl

[4] G.B. Folland - J.J. Kohn, The Neumann problem for the Cauchy-Riemann complex. Annals of Math. Studies, 57, Princeton U. Press, Princeton 1972. | MR | Zbl

[5] G.B. Folland - E.M. Stein, Estimates for the $\bar{\partial}_{b}$ complex and analysis on the Heisenberg group. Comm. Pure Appl. Math., 27, 1974, 429-522. | MR | Zbl

[6] H. Lewy, An example of a smooth differential operator without solution. Ann. Math., 66, 1957, 155-158. | MR | Zbl

[7] M.M. Peloso - F. Ricci, Analysis of the Kohn Laplacian on quadratic $CR$ manifolds. Preprint 2001. | DOI | MR | Zbl

[8] H. Rossi - M. Vergne, Group representation on Hilbert spaces defined in terms of $\bar{\partial}_{b}$-cohomology on the Silov boundary of a Siegel domain. Pac. J. Math., 6, 1976, 193-207. | fulltext mini-dml | MR | Zbl

[9] A. Andreotti - G. Fredricks - M. Nacinovich, On the absence of Poincaré lemma in tangential Chauchy-Riemann complexes. Ann. Scuola Norm. Sup. Pisa, 8, 1981, 365-404. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[10] J.J. Kohn, Boundary of complex manifolds. Proc. Conf. on Complex Manifolds (Minneapolis, 1964). Springer-Verlag, New York 1965, 81-94. | MR | Zbl

[11] F. Treves, A remark on the Poincaré lemma in analytic complexes with nondegenerate Levi form. Comm. PDE, 7, 1982, 1467-1482. | DOI | MR | Zbl