Sub-Laplacians of holomorphic $L^{p}$-type on exponential Lie groups
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 259-270

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this survey article, I shall give an overview on some recent developments concerning the $L^{p}$-functional calculus for sub-Laplacians on exponential solvable Lie groups. In particular, I shall give an outline on some recent joint work with W. Hebisch and J. Ludwig on sub-Laplacians which are of holomorphic $L^{p}$-type, in the sense that every $L^{p}$-spectral multiplier for $p \neq 2$ will be holomorphic in some domain.
@article{RLIN_2002_9_13_3-4_a7,
     author = {M\"uller, Detlef},
     title = {Sub-Laplacians of holomorphic $L^{p}$-type on exponential {Lie} groups},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {259--270},
     publisher = {mathdoc},
     volume = {Ser. 9, 13},
     number = {3-4},
     year = {2002},
     zbl = {1072.43005},
     mrnumber = {MR1984105},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a7/}
}
TY  - JOUR
AU  - Müller, Detlef
TI  - Sub-Laplacians of holomorphic $L^{p}$-type on exponential Lie groups
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2002
SP  - 259
EP  - 270
VL  - 13
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a7/
LA  - en
ID  - RLIN_2002_9_13_3-4_a7
ER  - 
%0 Journal Article
%A Müller, Detlef
%T Sub-Laplacians of holomorphic $L^{p}$-type on exponential Lie groups
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2002
%P 259-270
%V 13
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a7/
%G en
%F RLIN_2002_9_13_3-4_a7
Müller, Detlef. Sub-Laplacians of holomorphic $L^{p}$-type on exponential Lie groups. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 259-270. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a7/