Sub-Laplacians of holomorphic $L^{p}$-type on exponential Lie groups
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 259-270
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
In this survey article, I shall give an overview on some recent developments concerning the $L^{p}$-functional calculus for sub-Laplacians on exponential solvable Lie groups. In particular, I shall give an outline on some recent joint work with W. Hebisch and J. Ludwig on sub-Laplacians which are of holomorphic $L^{p}$-type, in the sense that every $L^{p}$-spectral multiplier for $p \neq 2$ will be holomorphic in some domain.
@article{RLIN_2002_9_13_3-4_a7,
author = {M\"uller, Detlef},
title = {Sub-Laplacians of holomorphic $L^{p}$-type on exponential {Lie} groups},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {259--270},
year = {2002},
volume = {Ser. 9, 13},
number = {3-4},
zbl = {1072.43005},
mrnumber = {MR1984105},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a7/}
}
TY - JOUR
AU - Müller, Detlef
TI - Sub-Laplacians of holomorphic $L^{p}$-type on exponential Lie groups
JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY - 2002
SP - 259
EP - 270
VL - 13
IS - 3-4
UR - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a7/
LA - en
ID - RLIN_2002_9_13_3-4_a7
ER -
%0 Journal Article
%A Müller, Detlef
%T Sub-Laplacians of holomorphic $L^{p}$-type on exponential Lie groups
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2002
%P 259-270
%V 13
%N 3-4
%U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a7/
%G en
%F RLIN_2002_9_13_3-4_a7
Müller, Detlef. Sub-Laplacians of holomorphic $L^{p}$-type on exponential Lie groups. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 259-270. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a7/