Formule de Gutzmer pour la complexification d'une espace Riemannien symétrique
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 233-241.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

A Gutzmer formula for the complexification of a Riemann symmetric space. We consider a complex manifold $\Omega$ and a real Lie group $G$ of holomorphic automorphisms of $\Omega$. The question we study is, for a holomorphic function $f$ on $\Omega$, to evaluate the integral of $|f|^{2}$ over a $G$-orbit by using the harmonic analysis of $G$. When $\Omega$ is an annulus in the complex plane and $G$ the rotation group, it is solved by a classical formula which is sometimes called Gutzmer’s formula. We establish a generalization of it when $\Omega$ is a $G$-invariant domain in the complexification of a Riemannian symmetric space $G/K$.
@article{RLIN_2002_9_13_3-4_a5,
     author = {Faraut, Jacques},
     title = {Formule de {Gutzmer} pour la complexification d'une espace {Riemannien} sym\'etrique},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {233--241},
     publisher = {mathdoc},
     volume = {Ser. 9, 13},
     number = {3-4},
     year = {2002},
     zbl = {1116.43006},
     mrnumber = {1032920},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a5/}
}
TY  - JOUR
AU  - Faraut, Jacques
TI  - Formule de Gutzmer pour la complexification d'une espace Riemannien symétrique
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2002
SP  - 233
EP  - 241
VL  - 13
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a5/
ID  - RLIN_2002_9_13_3-4_a5
ER  - 
%0 Journal Article
%A Faraut, Jacques
%T Formule de Gutzmer pour la complexification d'une espace Riemannien symétrique
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2002
%P 233-241
%V 13
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a5/
%F RLIN_2002_9_13_3-4_a5
Faraut, Jacques. Formule de Gutzmer pour la complexification d'une espace Riemannien symétrique. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 233-241. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a5/

[1] D.N. Akhiezer - S.G. Gindikin, On Stein extensions of real symmetric spaces. Math. Ann., 286, 1990, 1-12. | fulltext EuDML | DOI | MR | Zbl

[2] L. Geatti, Invariant domains in the complexification of a non-compact Riemannian symmetric space. Preprint, 2001. | Zbl

[3] S. Helgason, Geometric Analysis on Symmetric Spaces. A.M.S., 1994. | MR | Zbl

[4] B. Krötz - R.J. Stanton, Holomorphic aspects of representations: (I) automorphic functions. Preprint, 2001. | fulltext mini-dml | Zbl

[5] M. Lassalle, Séries de Laurent des fonctions holomorphes dans la complexification d’un espace symétrique compact. Ann. Scient. Éc. Norm. Sup., 11, 1978, 167-210. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[6] M.Lassalle,L’espace de Hardy d’un domaine de Reinhardt généralisé. J. Funct. Anal., 60, 1985, 309-340. | DOI | MR | Zbl

[7] R.E. Paley - N. Wiener, Fourier transforms in the complex domain. A.M.S., 1934. | Zbl

[8] G. Valiron, Théorie des fonctions. Masson, 1966. | Zbl