Hua-harmonic functions on symmetric type two Siegel domains
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 199-207.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We study a natural system of second order differential operators on a symmetric Siegel domain $\mathcal{D}$ that is invariant under the action of biholomorphic transformations. If $\mathcal{D}$ is of type two, the space of real valued solutions coincides with pluriharmonic functions. We show the main idea of the proof and give a survey of previous results.
@article{RLIN_2002_9_13_3-4_a2,
     author = {Buraczewski, Dariusz and Damek, Ewa},
     title = {Hua-harmonic functions on symmetric type two {Siegel} domains},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {199--207},
     publisher = {mathdoc},
     volume = {Ser. 9, 13},
     number = {3-4},
     year = {2002},
     zbl = {1225.32004},
     mrnumber = {644825},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a2/}
}
TY  - JOUR
AU  - Buraczewski, Dariusz
AU  - Damek, Ewa
TI  - Hua-harmonic functions on symmetric type two Siegel domains
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2002
SP  - 199
EP  - 207
VL  - 13
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a2/
LA  - en
ID  - RLIN_2002_9_13_3-4_a2
ER  - 
%0 Journal Article
%A Buraczewski, Dariusz
%A Damek, Ewa
%T Hua-harmonic functions on symmetric type two Siegel domains
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2002
%P 199-207
%V 13
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a2/
%G en
%F RLIN_2002_9_13_3-4_a2
Buraczewski, Dariusz; Damek, Ewa. Hua-harmonic functions on symmetric type two Siegel domains. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 199-207. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a2/

[1] N. Berline - M. Vergne, Equations de Hua et noyau de Poisson. Lecture Notes in Mathematics, vol. 880, Springer-Verlag, 1981, 1-51. | MR | Zbl

[2] A. Bonami - D. Buraczewski - E. Damek - A. Hulanicki - R. Penney - B. Trojan, Hua system and pluriharmonicity for symmetric irreducible Siegel domains of type II. Journal of Functional Analysis, 188, n. 1, 2002, 38-74. | fulltext mini-dml | DOI | MR | Zbl

[3] D. Buraczewski, Pluriharmonicity of Hua harmonic functions on symmetric irreducible Siegel domains of type II. Preprint.

[4] D. Buraczewski - E. Damek - A. Hulanicki, Bounded plurihramonic functions on symmetric irreducible Siegel domains. Mathematische Zeitschrift, to appear. | DOI | MR | Zbl

[5] E. Damek - A. Hulanicki, Pluriharmonic functions on symmetric irreducible Siegel domains. Studia Math., 139, n. 2, 2000, 104-140. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[6] E. Damek - A. Hulanicki - D. Müller - M. Peloso, Pluriharmonic $H^{2}$ functions on symmetric irreducible Siegel domains. Geom. and Funct. Analysis, 10, 2000, 1090-1117. | DOI | MR | Zbl

[7] Harish-Chandra, Discrete series for semisimple Lie groups II. Acta Math., 116, 1960, 1-111. | Zbl

[8] S. Helgason, Geometric Analysis on Symmetric Spaces. Amer. Math. Soc., Providence 1994. | MR | Zbl

[9] L.K. Hua, Harmonic Analysis of Functions of Several Complex Variables in Classical Domains. Translations of Math. Monographs, vol. 6, Amer. Math. Soc., Providence 1963. | MR | Zbl

[10] K. Johnson, Remarks on the theorem of Korányi and Malliavin on the Siegel upper half-plane of rank two. Proc. Amer. Math. Soc., 67, 1977, 351-356. | MR | Zbl

[11] K. Johnson, Differential equations and the Bergman-Shilov boundary on the Siegel upper half-plane. Arkiv for Matematik, 16, 1978, 95-108. | DOI | MR | Zbl

[12] K.D. Johnson - A. Korányi, The Hua operators on bounded symmetric domains of tube type. Ann. of Math., (2) 111, n. 3, 1980, 589-608. | DOI | MR | Zbl

[13] A. Korányi - P. Malliavin, Poisson formula and compound diffusion associated to an overdetermined elliptic system on the Siegel halfplane of rank two. Acta Math., 134, 1975, 185-209. | MR | Zbl

[14] M. Lassalle, Les équations de Hua d’un domaine borné symétrique du type tube. Invent. Math., 77, 1984, 129-161. | fulltext EuDML | DOI | MR | Zbl

[15] I.I. Pjatecki-Shapiro, Geometry and classification of homogeneous bounded domains in $C$. Uspehi Math. Nauk, 2, 1965, 3-51; Russian Math. Surv., 20, 1966, 1-48. | Zbl