Three related problems of Bergman spaces of tube domains over symmetric cones
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 183-197
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
It has been known for a long time that the Szegö projection of tube domains over irreducible symmetric cones is unbounded in $L^{p}$ for $p \neq 2$. Indeed, this is a consequence of the fact that the characteristic function of a disc is not a Fourier multiplier, a fundamental theorem proved by C. Fefferman in the 70’s. The same problem, related to the Bergman projection, deserves a different approach. In this survey, based on joint work of the author with D. Békollé, G. Garrigós, M. Peloso and F. Ricci, we give partial results on the range of $p$ for which it is bounded. We also show that there are two equivalent problems, of independent interest. One is a generalization of Hardy inequality for holomorphic functions. The other one is the characterization of the boundary values of functions in the Bergman spaces in terms of an adapted Littlewood-Paley theory. This last point of view leads naturally to extend the study to spaces with mixed norm as well.
@article{RLIN_2002_9_13_3-4_a1,
author = {Bonami, Aline},
title = {Three related problems of {Bergman} spaces of tube domains over symmetric cones},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {183--197},
publisher = {mathdoc},
volume = {Ser. 9, 13},
number = {3-4},
year = {2002},
zbl = {1225.32012},
mrnumber = {MR1984099},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a1/}
}
TY - JOUR AU - Bonami, Aline TI - Three related problems of Bergman spaces of tube domains over symmetric cones JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2002 SP - 183 EP - 197 VL - 13 IS - 3-4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a1/ LA - en ID - RLIN_2002_9_13_3-4_a1 ER -
%0 Journal Article %A Bonami, Aline %T Three related problems of Bergman spaces of tube domains over symmetric cones %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2002 %P 183-197 %V 13 %N 3-4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a1/ %G en %F RLIN_2002_9_13_3-4_a1
Bonami, Aline. Three related problems of Bergman spaces of tube domains over symmetric cones. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 183-197. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a1/