Three related problems of Bergman spaces of tube domains over symmetric cones
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 183-197

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

It has been known for a long time that the Szegö projection of tube domains over irreducible symmetric cones is unbounded in $L^{p}$ for $p \neq 2$. Indeed, this is a consequence of the fact that the characteristic function of a disc is not a Fourier multiplier, a fundamental theorem proved by C. Fefferman in the 70’s. The same problem, related to the Bergman projection, deserves a different approach. In this survey, based on joint work of the author with D. Békollé, G. Garrigós, M. Peloso and F. Ricci, we give partial results on the range of $p$ for which it is bounded. We also show that there are two equivalent problems, of independent interest. One is a generalization of Hardy inequality for holomorphic functions. The other one is the characterization of the boundary values of functions in the Bergman spaces in terms of an adapted Littlewood-Paley theory. This last point of view leads naturally to extend the study to spaces with mixed norm as well.
@article{RLIN_2002_9_13_3-4_a1,
     author = {Bonami, Aline},
     title = {Three related problems of {Bergman} spaces of tube domains over symmetric cones},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {183--197},
     publisher = {mathdoc},
     volume = {Ser. 9, 13},
     number = {3-4},
     year = {2002},
     zbl = {1225.32012},
     mrnumber = {MR1984099},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a1/}
}
TY  - JOUR
AU  - Bonami, Aline
TI  - Three related problems of Bergman spaces of tube domains over symmetric cones
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2002
SP  - 183
EP  - 197
VL  - 13
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a1/
LA  - en
ID  - RLIN_2002_9_13_3-4_a1
ER  - 
%0 Journal Article
%A Bonami, Aline
%T Three related problems of Bergman spaces of tube domains over symmetric cones
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2002
%P 183-197
%V 13
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a1/
%G en
%F RLIN_2002_9_13_3-4_a1
Bonami, Aline. Three related problems of Bergman spaces of tube domains over symmetric cones. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 183-197. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a1/