Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2002_9_13_2_a6, author = {Repin, Sergey}, title = {Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {121--133}, publisher = {mathdoc}, volume = {Ser. 9, 13}, number = {2}, year = {2002}, zbl = {1221.65244}, mrnumber = {1885308}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a6/} }
TY - JOUR AU - Repin, Sergey TI - Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2002 SP - 121 EP - 133 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a6/ LA - en ID - RLIN_2002_9_13_2_a6 ER -
%0 Journal Article %A Repin, Sergey %T Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2002 %P 121-133 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a6/ %G en %F RLIN_2002_9_13_2_a6
Repin, Sergey. Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 2, pp. 121-133. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a6/
[1] Linear and Quasilinear Equations of Parabolic Type. Nauka, Moscow 1967. | Zbl
- - ,[2] A posteriori error estimation in finite element analysis. Wiley, 2000. | DOI | MR | Zbl
- ,[3] The finite element method and its reliability. Clarendon Press, Oxford 2001. | MR
- ,[4] A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley, Teubner, New York 1996. | Zbl
,[5] Approximations by finite element functions using local regularization. RAIRO Anal. Numér., 9, 1975, R-2, 77-84. | fulltext EuDML | fulltext mini-dml | Zbl
,[6] Costants in Clement's-interpolation error and residual based a posteriori error estimates in finite element methods. East-West J. Numer. Anal., 8, 2000, n. 3, 153-175. | MR | Zbl
- ,[7] Adaptive finite element methods for conservation laws based on a posteriori error estimates. Commun. Pure and Appl. Math., vol. XLVIII, 1995, 199-234. | DOI | MR | Zbl
- ,[8] The boundary value problems of mathematical physics. Springer, New York 1985. | MR | Zbl
,[9] A posteriori error estimation for nonlinear variational problems by duality theory. Zapiski Nauchnych Seminarov POMI, 243, 1997, 201-214. | DOI | MR | Zbl
,[10] A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comput., v. 69, 230, 2000, 481-500. | DOI | MR | Zbl
,[11] A unified approach to a posteriori error estimation based on duality error majorants. Mathematics and Computers in Simulation, 50, 1999, 313-329. | DOI | MR
,[12] Estimates of the accuracy of two-dimensional models in elasticity theory. Probl. Mat. Anal., v. 22, 2001, 178-196 (in Russian). | Zbl
,[13] Two-sided estimates of deviations from exact solutions of uniformly elliptic equations. Trudi St.-Petersburg Mathematickal Society, v. 9, 2001, 148-179. | MR | Zbl
,[14] A posteriori estimates of the accuracy of variational methods for problems with nonconvex functionals. Algebra i Analiz, 11, 1999, n. 4, 151-182 (in Russian, translated in St.-Petersburg Mathematical Journal, v. 11, n. 4, 2000). | MR | Zbl
,