Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 2, pp. 121-133.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The paper is concerned with deriving functionals that give upper bounds of the difference between the exact solution of the initial-boundary value problem for the heat equation and any admissible function from the functional class naturally associated with this problem. These bounds are given by nonegative functionals called deviation majorants, which vanish only if the function and exact solution coincide. The deviation majorants pose a new type of a posteriori estimates that can be used in numerical analysis. Also, the estimates formed by such majorants can be viewed as a certain extension of well known «energy» estimates for solutions of parabolic type problems (see [1]).
Questa Nota è rivolta allo studio di funzionali che stabiliscono limiti superiori per la differenza tra soluzioni esatte del problema di Cauchy-Dirichlet per l’equazione del calore e qualsiasi funzione ammissibile nella classe associata in modo naturale a questo problema. Tali limiti sono espressi da funzionali non negativi, detti maggioranti di deviazione, che si annullano solo se la funzione coincide con la soluzione esatta. I maggioranti di deviazione pongono un nuovo tipo di stime a posteriori che possono essere utili nell’analisi numerica. Le stime date da questi maggioranti possono inoltre essere considerate come prolungamenti di stime dell’energia ben note per la soluzione di problemi di tipo parabolico (vedi [1]).
@article{RLIN_2002_9_13_2_a6,
     author = {Repin, Sergey},
     title = {Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {121--133},
     publisher = {mathdoc},
     volume = {Ser. 9, 13},
     number = {2},
     year = {2002},
     zbl = {1221.65244},
     mrnumber = {1885308},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a6/}
}
TY  - JOUR
AU  - Repin, Sergey
TI  - Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2002
SP  - 121
EP  - 133
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a6/
LA  - en
ID  - RLIN_2002_9_13_2_a6
ER  - 
%0 Journal Article
%A Repin, Sergey
%T Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2002
%P 121-133
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a6/
%G en
%F RLIN_2002_9_13_2_a6
Repin, Sergey. Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 2, pp. 121-133. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a6/

[1] O.A. Ladyzhenskaya - V.A. Solonnikov - N.N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type. Nauka, Moscow 1967. | Zbl

[2] M. Ainthworth - J.T. Oden, A posteriori error estimation in finite element analysis. Wiley, 2000. | DOI | MR | Zbl

[3] I. Babuška - T. Strouboulis, The finite element method and its reliability. Clarendon Press, Oxford 2001. | MR

[4] R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley, Teubner, New York 1996. | Zbl

[5] Ph. Clément, Approximations by finite element functions using local regularization. RAIRO Anal. Numér., 9, 1975, R-2, 77-84. | fulltext EuDML | fulltext mini-dml | Zbl

[6] C. Carstensen - S.A. Funcen, Costants in Clement's-interpolation error and residual based a posteriori error estimates in finite element methods. East-West J. Numer. Anal., 8, 2000, n. 3, 153-175. | MR | Zbl

[7] C. Johnson - A. Szepessy, Adaptive finite element methods for conservation laws based on a posteriori error estimates. Commun. Pure and Appl. Math., vol. XLVIII, 1995, 199-234. | DOI | MR | Zbl

[8] O.A. Ladyzhenskaya, The boundary value problems of mathematical physics. Springer, New York 1985. | MR | Zbl

[9] S. Repin, A posteriori error estimation for nonlinear variational problems by duality theory. Zapiski Nauchnych Seminarov POMI, 243, 1997, 201-214. | DOI | MR | Zbl

[10] S. Repin, A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comput., v. 69, 230, 2000, 481-500. | DOI | MR | Zbl

[11] S. Repin, A unified approach to a posteriori error estimation based on duality error majorants. Mathematics and Computers in Simulation, 50, 1999, 313-329. | DOI | MR

[12] S. Repin, Estimates of the accuracy of two-dimensional models in elasticity theory. Probl. Mat. Anal., v. 22, 2001, 178-196 (in Russian). | Zbl

[13] S. Repin, Two-sided estimates of deviations from exact solutions of uniformly elliptic equations. Trudi St.-Petersburg Mathematickal Society, v. 9, 2001, 148-179. | MR | Zbl

[14] S. Repin, A posteriori estimates of the accuracy of variational methods for problems with nonconvex functionals. Algebra i Analiz, 11, 1999, n. 4, 151-182 (in Russian, translated in St.-Petersburg Mathematical Journal, v. 11, n. 4, 2000). | MR | Zbl