Nekhoroshev stability for the D’Alembert problem of Celestial Mechanics
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 2, pp. 85-89

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The classical D’Alembert Hamiltonian model for a rotational oblate planet revolving near a «day-year» resonance around a fixed star on a Keplerian ellipse is considered. Notwithstanding the strong degeneracies of the model, stability results a là Nekhoroshev (i.e. for times which are exponentially long in the perturbative parameters) for the angular momentum of the planet hold.
@article{RLIN_2002_9_13_2_a2,
     author = {Biasco, Luca and Chierchia, Luigi},
     title = {Nekhoroshev stability for the {D{\textquoteright}Alembert} problem of {Celestial} {Mechanics}},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {85--89},
     publisher = {mathdoc},
     volume = {Ser. 9, 13},
     number = {2},
     year = {2002},
     zbl = {1072.37061},
     mrnumber = {MR1949481},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a2/}
}
TY  - JOUR
AU  - Biasco, Luca
AU  - Chierchia, Luigi
TI  - Nekhoroshev stability for the D’Alembert problem of Celestial Mechanics
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2002
SP  - 85
EP  - 89
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a2/
LA  - en
ID  - RLIN_2002_9_13_2_a2
ER  - 
%0 Journal Article
%A Biasco, Luca
%A Chierchia, Luigi
%T Nekhoroshev stability for the D’Alembert problem of Celestial Mechanics
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2002
%P 85-89
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a2/
%G en
%F RLIN_2002_9_13_2_a2
Biasco, Luca; Chierchia, Luigi. Nekhoroshev stability for the D’Alembert problem of Celestial Mechanics. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 2, pp. 85-89. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a2/