Nekhoroshev stability for the D’Alembert problem of Celestial Mechanics
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 2, pp. 85-89
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
The classical D’Alembert Hamiltonian model for a rotational oblate planet revolving near a «day-year» resonance around a fixed star on a Keplerian ellipse is considered. Notwithstanding the strong degeneracies of the model, stability results a là Nekhoroshev (i.e. for times which are exponentially long in the perturbative parameters) for the angular momentum of the planet hold.
@article{RLIN_2002_9_13_2_a2,
author = {Biasco, Luca and Chierchia, Luigi},
title = {Nekhoroshev stability for the {D{\textquoteright}Alembert} problem of {Celestial} {Mechanics}},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {85--89},
publisher = {mathdoc},
volume = {Ser. 9, 13},
number = {2},
year = {2002},
zbl = {1072.37061},
mrnumber = {MR1949481},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a2/}
}
TY - JOUR AU - Biasco, Luca AU - Chierchia, Luigi TI - Nekhoroshev stability for the D’Alembert problem of Celestial Mechanics JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2002 SP - 85 EP - 89 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a2/ LA - en ID - RLIN_2002_9_13_2_a2 ER -
%0 Journal Article %A Biasco, Luca %A Chierchia, Luigi %T Nekhoroshev stability for the D’Alembert problem of Celestial Mechanics %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2002 %P 85-89 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a2/ %G en %F RLIN_2002_9_13_2_a2
Biasco, Luca; Chierchia, Luigi. Nekhoroshev stability for the D’Alembert problem of Celestial Mechanics. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 2, pp. 85-89. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a2/