A Note on squares in arithmetic progressions, II
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 2, pp. 69-75
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We show that the number of squares in an arithmetic progression of length $N$ is at most $c_{1}N^{3/5}(\log N)^{c_{2}}$, for certain absolute positive constants $c_{1}$, $c_{2}$. This improves the previous result of Bombieri, Granville and Pintz [1], where one had the exponent $\frac{2}{3}$ in place of our $\frac{3}{5}$. The proof uses the same ideas as in [1], but introduces a substantial simplification by working only with elliptic curves rather than curves of genus $5$ as in [1].
@article{RLIN_2002_9_13_2_a0,
author = {Bombieri, Enrico and Zannier, Umberto},
title = {A {Note} on squares in arithmetic progressions, {II}},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {69--75},
year = {2002},
volume = {Ser. 9, 13},
number = {2},
zbl = {1072.11010},
mrnumber = {MR1949479},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a0/}
}
TY - JOUR AU - Bombieri, Enrico AU - Zannier, Umberto TI - A Note on squares in arithmetic progressions, II JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2002 SP - 69 EP - 75 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a0/ LA - en ID - RLIN_2002_9_13_2_a0 ER -
%0 Journal Article %A Bombieri, Enrico %A Zannier, Umberto %T A Note on squares in arithmetic progressions, II %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2002 %P 69-75 %V 13 %N 2 %U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a0/ %G en %F RLIN_2002_9_13_2_a0
Bombieri, Enrico; Zannier, Umberto. A Note on squares in arithmetic progressions, II. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 2, pp. 69-75. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a0/