Shakedown theorems in poroplastic dynamics
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 1, pp. 43-53.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The constitutive model assumed in this Note is poroplastic two-phase (solid-fluid) with full saturation and stable in Drucker’s sense. A solid or structure of this material is considered, subjected to dynamic external actions, in particular periodic or intermittent, in a small deformation regime. A sufficient condition and a necessary one are established, by a «static» approach, for shakedown (or adaptation), namely for boundedness in time of the cumulative dissipated energy.
Il modello costitutivo assunto in questa Nota è poroplastico bifase (solido-fluido) a saturazione totale e stabile nel senso di Drucker. Un solido o struttura di questo materiale è considerato soggetto ad azioni esterne dinamiche, in particolare periodiche o intermittenti, in regime di piccole deformazioni. Si dimostrano, in base ad un approccio «statico», una condizione sufficiente e una necessaria per l’adattamento (o «shakedown»), inteso come caratterizzato da limitatezza nel tempo dell’energia dissipata cumulativa.
@article{RLIN_2002_9_13_1_a3,
     author = {Cocchetti, Giuseppe and Maier, Giulio},
     title = {Shakedown theorems in poroplastic dynamics},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {43--53},
     publisher = {mathdoc},
     volume = {Ser. 9, 13},
     number = {1},
     year = {2002},
     zbl = {1221.74023},
     mrnumber = {1744290},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_1_a3/}
}
TY  - JOUR
AU  - Cocchetti, Giuseppe
AU  - Maier, Giulio
TI  - Shakedown theorems in poroplastic dynamics
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2002
SP  - 43
EP  - 53
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_1_a3/
LA  - en
ID  - RLIN_2002_9_13_1_a3
ER  - 
%0 Journal Article
%A Cocchetti, Giuseppe
%A Maier, Giulio
%T Shakedown theorems in poroplastic dynamics
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2002
%P 43-53
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_1_a3/
%G en
%F RLIN_2002_9_13_1_a3
Cocchetti, Giuseppe; Maier, Giulio. Shakedown theorems in poroplastic dynamics. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 1, pp. 43-53. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_1_a3/

[1] G. Ceradini, Sull'adattamento dei corpi elasto-plastici soggetti ad azioni dinamiche. Giornale del Genio Civile, 415, 1969, 239-258.

[2] G. Cocchetti - G. Maier, Static shakedown theorems in piecewise linearized poroplasticity. Arch. Appl. Mech., 68, 1998, 651-661. | Zbl

[3] G. Cocchetti - G. Maier, Shakedown analysis in poroplasticity by linear programming. Int. J. Num. Meth. Engng, 47(1-3), 2000, 141-168. | DOI | MR | Zbl

[4] A. Corigliano - G. Maier - S. Pycko, Dynamic shakedown analysis and bounds for elastoplastic structures with nonassociative, internal variable constitutive laws. Int. J. Sol. Struct., 32, 1995, 3145-3166. | DOI | MR | Zbl

[5] L. Corradi - G. Maier, Inadaptation theorems in the dynamics of elastic, work-hardening structures. Ingenieur-Archiv, 43, 1973, 44-57. | MR | Zbl

[6] O. Coussy, Mechanics of porous continua. John Wiley & Sons, Chichester 1995. | Zbl

[7] O. Débordes - B. Nayroles, Sur la théorie et le calcul à l’adaptation des structures élastoplastiques. J. Mécanique, 15, 1976, 1-53. | MR | Zbl

[8] B. Fauchet - O. Coussy - A. Carrère - B. Tardieu, Poroplastic analysis of concrete dams and their foundations. Dam Engineering, 2(3), 1992, 165-192.

[9] C. Gavarini, Sul rientro in fase elastica delle vibrazioni forzate elasto-plastiche. Giornale del Genio Civile, 1969, 251-261.

[10] J. A. Kamenjarzh, Limit analysis of solids and structures. CRC Press, New York 1996. | MR | Zbl

[11] W.T. Koiter, General theorems for elastic-plastic solids. In: I.N. Sneddon - R. Hill (eds.)., Progress in Solid Mechanics. North-Holland, Amsterdam 1960, 167-221. | MR | Zbl

[12] J.A. König, Shakedown of elastic-plastic structures. Elsevier, Amsterdam 1987.

[13] R.W. Lewis - B.A. Schrefler, The finite element method in the static and dynamic deformation and consolidation of porous media. John Wiley & Sons, Chichester 1998. | Zbl

[14] G. Maier - C. Comi, Variational finite element modelling in poroplasticity. In: B.D. Reddy (ed.), Recent Developments in Computational and Applied Mechanics. CIMNE, Barcelona 1997, 180-199. | Zbl

[15] G. Maier - G. Novati, Dynamic shakedown and bounding theory for a class of nonlinear hardening discrete structural models. Int. J. Plasticity, 6, 1990, 551-572. | Zbl

[16] G. Maier - V. Carvelli - G. Cocchetti, On direct methods for shakedown and limit analysis. European Journal of Mechanics A/Solids, Special Issue, 19, 2000, S79-S100.

[17] C. Polizzotto, Dynamic shakedown by modal analysis. Meccanica, 19, 1984, 133-144. | DOI | MR | Zbl

[18] C. Polizzotto, On shakedown of structures under dynamic agencies. In: A. Sawczuk - C. Polizzotto (eds.), Inelastic Analysis Under Variable Loads. Cogras, Palermo 1984, 5-29.

[19] D. Weichert - G. Maier (eds.), Inelastic analysis of structures under variable repeated loads. Kluwer Academic Publishers, Dordrecht 2000.