Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2002_9_13_1_a1, author = {Birindelli, Isabeau and Laconelli, Ermanno}, title = {A {Note} on one dimensional symmetry in {Carnot} groups}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {17--22}, publisher = {mathdoc}, volume = {Ser. 9, 13}, number = {1}, year = {2002}, zbl = {1197.35101}, mrnumber = {1775735}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_1_a1/} }
TY - JOUR AU - Birindelli, Isabeau AU - Laconelli, Ermanno TI - A Note on one dimensional symmetry in Carnot groups JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2002 SP - 17 EP - 22 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_1_a1/ LA - en ID - RLIN_2002_9_13_1_a1 ER -
%0 Journal Article %A Birindelli, Isabeau %A Laconelli, Ermanno %T A Note on one dimensional symmetry in Carnot groups %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2002 %P 17-22 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_1_a1/ %G en %F RLIN_2002_9_13_1_a1
Birindelli, Isabeau; Laconelli, Ermanno. A Note on one dimensional symmetry in Carnot groups. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 1, pp. 17-22. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_1_a1/
[1] Entire solutions of semilinear elliptic equations in $\mathbb{R}^{3}$ and a conjecture of De Giorgi. J. Amer. Math. Soc., 13, 2000, 725-739. | DOI | MR | Zbl
- ,[2] The Liouville property and a conjecture of De Giorgi. Comm. Pure Appl. Math., 53, 2000, n. 8, 1007-1038. | DOI | MR | Zbl
- - ,[3] Monotonicity for Elliptic Equations in Unbounded Domains. Comm. Pure Appl. Math., 50, 1997, 1088-1111. | DOI | MR | Zbl
- - ,[4] One-dimensional symmetry of bounded entire solutions of some elliptic equations. Duke Math. J., 103, 2000, n. 3, 375-396. | fulltext mini-dml | DOI | MR | Zbl
- - ,[5] On the method of moving planes and the sliding method. Bol. Soc. Bras. Mat., vol. 22, 1991, 1-37. | DOI | MR | Zbl
- ,[6] One dimensional symmetry in the Heisenberg group. Ann. Scuola Normale Superiore di Pisa, to appear. | fulltext EuDML | fulltext mini-dml | MR | Zbl
- ,[7] Maximum Principle on unbounded domains for sub-Laplacians: a Potential Theory approach. Preprint. | DOI | MR | Zbl
- ,[8] Symmetry for solutions of semilinear elliptic equations in $\mathbb{R}^{N}$ and related conjectures. Ricerche di Matematica, XLVIII, 1999, 129-154. | MR | Zbl
,[9] On a conjecture of De Giorgi and some related problems. Math. Ann., 311, 1998, 481-491. | DOI | MR | Zbl
- ,