Limit Weierstrass schemes on stable curves with 2 irreducible components
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 12 (2001) no. 4, pp. 205-228.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We are concerned with limits of Weierstrass points under degeneration of smooth curves to stable curves of non compact type, union of two irreducible smooth components meeting transversely at $m \ge 1$ points. The case $m = 1$ having already been treated by Eisenbud and Harris in [8], we analyze the situation for $m > 1$.
Si studiano limiti di punti di Weierstrass per degenerazioni di curve lisce a curve stabili di tipo non compatto, unione di due componenti lisce irriducibili che si intersecano trasversalmente in $m \ge 1$ punti. Il caso $m = 1$, essendo di tipo compatto, è già stato trattato da Eisenbud e Harris in [8], sicché nella presente Nota verrà analizzata la situazione per $m > 1$.
@article{RLIN_2001_9_12_4_a1,
     author = {Coppens, Marc and Gatto, Letterio},
     title = {Limit {Weierstrass} schemes on stable curves with 2 irreducible components},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {205--228},
     publisher = {mathdoc},
     volume = {Ser. 9, 12},
     number = {4},
     year = {2001},
     zbl = {1072.14038},
     mrnumber = {360601},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_4_a1/}
}
TY  - JOUR
AU  - Coppens, Marc
AU  - Gatto, Letterio
TI  - Limit Weierstrass schemes on stable curves with 2 irreducible components
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2001
SP  - 205
EP  - 228
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_4_a1/
LA  - en
ID  - RLIN_2001_9_12_4_a1
ER  - 
%0 Journal Article
%A Coppens, Marc
%A Gatto, Letterio
%T Limit Weierstrass schemes on stable curves with 2 irreducible components
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2001
%P 205-228
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_4_a1/
%G en
%F RLIN_2001_9_12_4_a1
Coppens, Marc; Gatto, Letterio. Limit Weierstrass schemes on stable curves with 2 irreducible components. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 12 (2001) no. 4, pp. 205-228. http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_4_a1/

[1] E. Arbarello, Weierstrass Points and Moduli of Curves. Compositio Mathematica, 29-3, 1974, 325-342. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[2] E. Arbarello - M. Cornalba - P.A. Griffiths - J. Harris, Geometry of Algebraic Curves. Vol. 1, Springer-Verlag, 1984. | Zbl

[3] F. Cukierman, Families of Weierstrass points. Duke Math. J., 58, n. 2, 1989, 317-346. | fulltext mini-dml | DOI | MR | Zbl

[4] S. Diaz, Exceptional Weierstrass points and the divisor on moduli space that they define. Vol. 56, number 327, Memoirs of the AMS, 1985. | MR | Zbl

[5] P. Deligne - D. Mumford, On the irreducibility of the space of curves of given genus. Publ. Math. I.H.E.S., 36, 1969, 75-109. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[6] D. Eisenbud - J. Harris, Divisor on general curves and cuspidal rational curves. Invent. Math., 74, 1983, 371-418. | fulltext EuDML | DOI | MR | Zbl

[7] D. Eisenbud - J. Harris, Limit linear series: Basic theory. Invent. Math., 85, 1986, 337-371. | fulltext EuDML | DOI | MR | Zbl

[8] D. Eisenbud - J. Harris, Existence, decomposition and limits of certain Weierstrass points. Invent. Math., 87, 1987, 495-515. | fulltext EuDML | DOI | MR | Zbl

[9] E. Esteves, Wronski Algebra systems on families of singular curves. Ann. Scient. Ec. Norm. Sup. (4), 29, 1996, 107-134. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[10] E. Esteves, Limit Weierstrass points on general two-component curves. Preprint, 1998.

[11] E. Esteves - N. Medeiros, Limits of Weierstrass points in regular smoothings of curves with two components. C. R. Acad. Sci. Paris, Série I Math., 330, 2000, 873-878. | fulltext mini-dml | DOI | MR | Zbl

[12] E. Esteves - N. Medeiros, Limit canonical systems on curves with two components. Preprint 2000, arXiv: math. AG/008108. | fulltext mini-dml | DOI | MR | Zbl

[13] H. Farkas - I. Kra, Riemann Surfaces. GTM, 71, Springer-Verlag, 1984. | DOI | MR | Zbl

[14] O. Forster, Lectures on Riemann Surfaces. Springer-Verlag, 1984. | MR | Zbl

[15] L. Gatto, Weight Sequences versus Gap Sequences at Singular Points of Gorenstein Curves. Geom. Dedicata, 54, 1995, 267-300. | DOI | MR | Zbl

[16] L. Gatto, On the closure in $\overline{M}_{g}$ of Smooth Curves having a Special Weierstrass Point. Math. Scand., 88, 2001, 41-71. | MR | Zbl

[17] A. Grothendieck, Techniques de construction et théorèmes d’existence en géométrie algébrique IV. Les schémas de Hilbert. Séminaire Bourbaki, 221, 1960/61. | fulltext EuDML | fulltext mini-dml | Zbl

[18] P. Griffiths - J. Harris, Principles of Algebraic Geometry. John Wiley & Sons, 1978. | MR | Zbl

[19] R.C. Gunning, Lectures on Riemann Surfaces. Princeton Mathematical Notes, 1966. | MR | Zbl

[20] R. Hartshorne, Algebraic Geometry. Springer-Verlag, 1977. | MR | Zbl

[21] J. Harris - D. Mumford, On the Kodaira Dimension of the Moduli Space of Curves. Invent. Math., 67, 1982, 23-86. | fulltext EuDML | DOI | MR | Zbl

[22] R.F. Lax, Weierstrass Weight and Degeneration. Proc. Amer. Math. Soc., 101, 1987, 8-10. | DOI | MR | Zbl

[23] S. Lang, Algebra. 3rd ed., Addison-Wesley, 1994. | MR | Zbl

[24] C. Widland - R. Lax, Weierstrass Points on Gorenstein Curves. Pacific J. Math., 142, n. 1, 1990, 197-208. | fulltext mini-dml | MR | Zbl