Variational approximation of flux in conforming finite element methods for elliptic partial differential equations : a model problem
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 12 (2001) no. 3, pp. 159-166

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider the approximation of elliptic boundary value problems by conforming finite element methods. A model problem, the Poisson equation with Dirichlet boundary conditions, is used to examine the convergence behavior of flux defined on an internal boundary which splits the domain in two. A variational definition of flux, designed to satisfy local conservation laws, is shown to lead to improved rates of convergence.
@article{RLIN_2001_9_12_3_a1,
     author = {Brezzi, Franco and Hughes, Thomas J. R. and S\"uli, Endre},
     title = {Variational approximation of flux in conforming finite element methods for elliptic partial differential equations : a model problem},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {159--166},
     publisher = {mathdoc},
     volume = {Ser. 9, 12},
     number = {3},
     year = {2001},
     zbl = {1221.65304},
     mrnumber = {MR1898457},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_3_a1/}
}
TY  - JOUR
AU  - Brezzi, Franco
AU  - Hughes, Thomas J. R.
AU  - Süli, Endre
TI  - Variational approximation of flux in conforming finite element methods for elliptic partial differential equations : a model problem
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2001
SP  - 159
EP  - 166
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_3_a1/
LA  - en
ID  - RLIN_2001_9_12_3_a1
ER  - 
%0 Journal Article
%A Brezzi, Franco
%A Hughes, Thomas J. R.
%A Süli, Endre
%T Variational approximation of flux in conforming finite element methods for elliptic partial differential equations : a model problem
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2001
%P 159-166
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_3_a1/
%G en
%F RLIN_2001_9_12_3_a1
Brezzi, Franco; Hughes, Thomas J. R.; Süli, Endre. Variational approximation of flux in conforming finite element methods for elliptic partial differential equations : a model problem. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 12 (2001) no. 3, pp. 159-166. http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_3_a1/