Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2001_9_12_2_a3, author = {Bosetto, Elena and Serra, Enrico and Terracini, Susanna}, title = {Density of chaotic dynamics in periodically forced pendulum-type equations}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {107--113}, publisher = {mathdoc}, volume = {Ser. 9, 12}, number = {2}, year = {2001}, zbl = {1072.37048}, mrnumber = {1800617}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_2_a3/} }
TY - JOUR AU - Bosetto, Elena AU - Serra, Enrico AU - Terracini, Susanna TI - Density of chaotic dynamics in periodically forced pendulum-type equations JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2001 SP - 107 EP - 113 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_2_a3/ LA - en ID - RLIN_2001_9_12_2_a3 ER -
%0 Journal Article %A Bosetto, Elena %A Serra, Enrico %A Terracini, Susanna %T Density of chaotic dynamics in periodically forced pendulum-type equations %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2001 %P 107-113 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_2_a3/ %G en %F RLIN_2001_9_12_2_a3
Bosetto, Elena; Serra, Enrico; Terracini, Susanna. Density of chaotic dynamics in periodically forced pendulum-type equations. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 12 (2001) no. 2, pp. 107-113. http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_2_a3/
[1] Complex dynamics in a class of reversible equations. Progr. in Diff. Eqs. Appl., 43, Birkhäuser, Boston 2001, 147-159. | MR | Zbl
- - ,[2] Genericity of the multibump dynamics for almost periodic Duffing-like systems. Proc. Royal Soc. Edinburgh, 129A, 1999, 885-901. | DOI | MR | Zbl
- - ,[3] Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. IHP, Anal. non Linéaire, 15, 1998, 233-252. | fulltext EuDML | fulltext mini-dml | DOI | MR | Zbl
- ,[4] A variational approach to chaotic dynamics in periodically forced nonlinear oscillators. Ann. IHP, Anal. non Linéaire, 17, 2000, 673-709. | fulltext EuDML | fulltext mini-dml | DOI | MR | Zbl
- ,[5] Generic-type results for chaotic dynamics in equations with periodic forcing terms. Preprint 2000. | DOI | MR | Zbl
- - ,[6] A global condition for quasi-random behavior in a class of conservative systems. Comm. Pure Appl. Math., 49, 1996, 285-305. | DOI | MR | Zbl
- ,[7] Homoclinic solutions to periodic motions in a class of reversible equations. Calc. Var. and PDEs, 9, 1999, 157-184. | DOI | MR | Zbl
- ,[8] Generic results for the existence of nondegenerate periodic solutions of some differential systems with periodic nonlinearities. J. Diff. Eq., 91, 1991, 138-148. | DOI | MR | Zbl
- - - ,[9] Variational construction of orbits of twist diffeomorphisms. J. of AMS, 4, 1991, 207-263. | DOI | MR | Zbl
,[10] Heteroclinics for a reversible Hamiltonian system. Ergod. Th. and Dyn. Sys., 14, 1994, 817-829. | DOI | MR | Zbl
,[11] Heteroclinics for a reversible Hamiltonian system, 2. Diff. and Int. Eq., 7, 1994, 1557-1572. | MR | Zbl
,[12] Connecting orbits for a reversible Hamiltonian system. Ergod. Th. and Dyn. Sys., to appear. | DOI | MR | Zbl
,[13] Looking for the Bernoulli shift. Ann. IHP, Anal. non Linéaire, 10, 1993, 561-590. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[14] On the structure of the solution set of forced pendulum-type equations. J. Diff. Eq., 131, 1996, 189-208. | DOI | MR | Zbl
- - ,[15] Non degeneracy and chaotic motions for a class of almost-periodic Lagrangian systems. Nonlin. Anal. TMA, 37, 1999, 337-361. | DOI | MR | Zbl
,[16] Introduction to applied nonlinear dynamical systems and chaos. Springer-Verlag, New York 1990. | MR | Zbl
,